

Address : 31, Myeongnyesandan 1-ro, Jangan-eup, Gijang-gun, Busan, Korea Tel : 82-51-727-5588 Fax : 82-51-727-9160 Homepage : www.hkweldtek.com

Rev. 05 // Mar. 2020

Welding Consumables Guide Book

OK

MANAGEMENT SYSTEM CERTIFICATE

Certificate No: 09162-2010-AQ-KOR-KAB Initial certification date: 02 December 2010 Valid: 03 December 2019 - 02 December 2022

This is to certify that the management system of

HANKOOK WELDTEK CO., LTD.

31, Myeongnyesandan 1-ro, Jangan-eup, Gijang-gun, Busan, 46028, Korea

has been found to conform to the Quality Management System standard: ISO 9001:2015, KS Q ISO 9001:2015

This certificate is valid for the following scope: Manufacture of Flux Cored Wires, Covered Electrodes and Stainless Steel Welding Wires & Rods

Place and date: Seoul, 28 November 2019

Accrecited by Member of the IAP for GMS

For the issuing office: DNV GL – Business Assurance 18F, Kyobo Bidg., 1, Jong-ro, Jongno-gu, Seoul, Korea

Jang-Sup Lee Management Representative

Lack of fulfiment of conditions as set out in the Certification Agreement may render this Certificate invelid. DN VG, Business Assumeds Korene Ld is accredited by Kores Accreditation Board (KAB) as a Quality Managament System certification body (Accreditation number: KAB-QC-10). ACCREDITED UNIT: DNV GL Business Assumes Kores Ltd, 19F Kyobo Bida, 1 Jang-ro, Jangorgu, Serul, Republic of Kores. TEL:+82.2 724 8413.

HANKOOK WELDTEK

FCAW

SOLID WIRE

MIG WIRE

Welding Consumables Guide Book

About Us

HANKOOK WELDTEK CEO GREETINGS

Since the establishment of HANKOOK WELDTEK Co., Ltd. in 2009, we specialized in manufacturing high-quality welding materials, based on professional production systems and skilled manpower.

With a business principle of striving to exceed customer expectations, we will become a valuable business partner that you can count on.

With innovation, the desire, and the passion to become a leader in the industry, HANKOOK WELDTEK will change the way business is done.

Our values are forward thinking and are always adaptive to the constant demands of the changing world.

We guarantee to continually improve processes, develop leading industry experts, and pioneer innovative technologies.

As the world recovers from the economic crisis, we have a vision and plan in place to dominate the industry internationally in leaps and bounds.

Thank you very much.

- 2011.12 Approved by KS (KS D 7104 YFW-C50DX)
- 2012.02 Started to produce Pail Pack
- 2012.04 Approved by ABS, DNV
- 2012.10 Expanded Flux Cored Wire Facilities (6,000ton/year)
- 2012.11 Approved by KS (KS D 7104 YFW-C602X)
- 2013.05 Approved by KR, NK, GL, BV, LR, DNV, ABS, CCS
- 2014.05 Approved by RINA
- 2014.10 Busan factoruy expenmsion and relocation
- 2015.05 Approved by CE
- 2015.09 Approved by JIS
- 2016.12 Approved by CWB
- 2018.10 Approved by PRS

ADDRESS: 31, Myeongnyesandan 1-ro, Jangan-eup, Gijang-gun, Busan, Korea Tel 82-51-727-5588 Fax 82-51-727-9160 / Homepage: www.hkweldtek.com

Contents

	FLUX CORED ARC WELDING WIRES For Mild steel & 490MPa high tensile steels For High tensile steels For Self Shielded For Weather proof steels For Low-temperature steels For Low-temperature steels For Heat-resistant, Low alloy steels For Stainless steels For Ni base alloy For Hardfacing	13
	SOLID WIRE	95
	MIG WIRE · · · · · · · · · · · · · · · · · · ·	101
	TIG WIRE For Mild steel & 490MPa high tensile steels For Stainless steels For Ni base alloy	111
	SMAW ····· For Mild steel & 490MPa high tensile steels For Low Alloy Heat Resistant steels For Low Temperature Service steels For Cast Iron For Stainless steels For Ni base alloy	127
	Submerged Arc Welding Consumables For Mild steel & 490MPa high tensile steels For Stainless steels For ESW	159
S	ALUMINUM TIG & MIG	168 169

HANKOOK WELDTEK WELDING CONSUMABLES

1. FLUX CORED ARC WELDING WIRES

	BRAND NAME	AWS	KS	JIS	PAGE
	WT-71	A5.36 E71T1-C1/M21A0-CS1-H8	D7104 YFW-C50DR	Z3313 T49J0T1-1C/MA-U H10	15
	WT-71LF	A5.36 E71T1-C1/M21A0-CS1-H8	D7104 YFW-C50DR	Z3313 T492T1-1C/MA-U H10	16
	WT-70	A5.36 E70T1-C1/M21A0-CS1-H8	D7104 YFW-C50DR	Z3313 T49J0T15-0C/MA-U H10	17
Mild steel &	WT-70T9	A5.36 E70T1-C1A2-CS1-H8	D7104 YFW-C502M	Z3313 T493T15-0CA H10	18
490MPa high tensile steels	WT-70C	A5.18 E70C-6M	D7104 YFW-A50DM	Z3313 T493T15-0MA-H5	19
light densite steels	WT-70Z	A5.18 E70C-G			20
	WT-70T5	A5.36 E70T5-C1/M21A2-CS1-H4	D7104 YFW-A502B	Z3313 T494T5-0C/MA-U H5	21
	WT-70SL	A5.36 E70T1-C1A2-CS1-H8	D7104 YFW-C50DM	Z3313 T492T15-0CA-U H5	22
	WT-70MP	A5.36 E70T1-C1/M21A0-CS1-H8	D7104 YFW-C50DM	Z3313 T49J0T1-0C/MA-U H10	23
	WT-81	A5.36 E81T1-C1/M21A2-Ni1-H8	D7104 YFW-C602R	Z3313 T573T1-1C/MA-N2 H10	24
	WT-80	A5.36 E80T1-C1/M21A2-Ni1-H8	D7104 YFW-C602R	Z3313 T573T1-0C/MA-N2 H10	25
	WT-81Ni2	A5.36 E81T1-C1/M21A4-Ni2-H8	8 Z3313 T574T1-1C/MA-N5-U		26
	WT-80CG	A5.28 E80C-GM			27
	WT-81TG	A5.29 E81T1-GC		Z3313 T550T1-1CA-U H10	28
	WT-80TG	A5.29 E80T1-G		Z3313 T552T15-0CA-N2 H10	29
High tensile steels	WT-91	A5.36 E91T1-C1/M21AG-G-H4	D7104 YFW-C602R	Z3313 T624T1-1C/MAP-N2 H5	30
	WT-90	A5.36 E90T1-C1/M21AG-G-H4	D7104 YFW-C602R	Z3313 T624T1-0C/MAP-N2 H5	31
	WT-100K3	A5.36 E100T1-M21A0-K3-H4			32
	WT-111K3	A5.36 E111T1-C1/M21A0-K3-H4		Z3313 T762T1-1C/MA-N3M2 H5	33
	WT-115	A5.36 E110T5-M21A6-K4-H4		Z3313 T765T5-0MA-N4C1M2 H5	34
	WT-110K4	A5.36 E110T15-M21A6-K4-H4			35
	WT-110CG	A5.28 E110C-G			36
	WT-71GS	A5.36 E71TG-AZ-GS-H8	D7104 YFW-S50GB	Z3313 T49TG-1NS-G	37
	WT-71T11	A5.36 E71T11-AZ-CS3-H8	D7104 YFW-S50GB	Z3313 T49T7-1NA	38
Self Shielded	WT-71T8	A5.36 E71T8-AZ-CS3-H8			39
	WT-71T4	A5.36 E71T4-AZ-CS3-H8		Z3313 T49T4-1NA	40
	WT-71W		D7109 YFA-50W	Z3320 YFA-50W	41
Weather proof	WT-81W	A5.36 E81T1-C1A2-W2-H8	D7109 YFA-58W	Z3320 YFA-58W	42
steels	WT-80CW	A5.29 E80T1-W2C	D7109 YFA-58W	Z3320 YFA-58W	43

	BRAND NAME	AWS	KS	JIS	PAGE
	WT-71T9	A5.36 E71T9-C1/M21A2-CS1-H4	D7104 YFW-C503R	Z3313 T494T1-1C/MA-U H5	44
	WT-71SR	A5.36 E71T12-C1A4-CS2-H4	D7104 YFW-C504R	Z3313 T494T1-1CAP H5	45
Low-temperature	WT-71SRM	A5.36 E71T12-M21A4-CS2-H4	D7104 YFW-A504R	Z3313 T494T1-1MAP H5	46
steels	WT-80K2	A5.36 E80T1-C1/M21A8-K2-H4	D7104 YFW-C506M	Z3313 T556T1-0C/MA-N3-U H5	47
	WT-81K2	A5.36 E81T1-C1/M21A8-K2-H4	D7104 YFW-C506R	Z3313 T556T1-1C/MA-N3-U H5	48
	WT-91K2	A5.36 E91T1-C1/M21A8-K2-H4	D7104 YFW-C604R	Z3313 T624T1-1C/MA-N3M1-U H5	49
	WT-81A1	A5.36 E81T1-C1PZ-A1-H8	D7121 YFM-C	Z3318 YFM-C	50
	WT-81B2	A5.36 E81T1-C1PZ-B2-H8	D7121 YF1CM-C	Z3318 YF1CM-C	51
	WT-85B2	A5.36 E80T5-C1PZ-B2-H8	D7121 YF1CM-G	Z3318 YF1CM-G	52
Heat-resistant,	WT-81B6	A5.36 E81T1-M21PZ-B6-H8		Z3318 T55 T1-1M-5CM	53
ow alloy steels	WT-81B8	A5.36 E81T1-M21PZ-B8-H8			54
	WT-91B3	A5.36 E91T1-C1PZ-B3-H8	D7121 YF2CM-C	Z3318 YF2CM-C	55
	WT-91B9	A5.36 E91T1-M21PZ-B9-H8	51121 11 2011 0	20010 11 2011 0	56
	WT-307P	A5.22 E307T0-1/4		Z3323 TS307-FB1	57
	WT-308L(P)	A5.22 E308LT0/1-1/4	D3612 YF308LC	Z3323 TS308L-FB0/1	58
	WT-308H	A5.22 E308HT1-1/4		Z3323 TS308H-FB1	59
	WT-309L(P)	A5.22 E309LT0/1-1/4	D3612 YF309LC	Z3323 TS309L-FB0/1	60
	WT-309H	A5.22 E309HT1-1/4		Z3323 TS309H-FB1	61
	WT-309MoL	A5.22 E309LMoT1-1/4	D3612 YF309MoLC	Z3323 TS309LMo-FB1	62
	WT-M309L	A5.22 E309LT0-G	D3612 YF309LG	Z3323 TS309L-MA0	63
	WT-309LNb	A5.22 E309LNbT1-1/4			64
	WT-310	A5.22 E310T0-1/4		Z3323 TS310-FB1	65
Stainless steels	WT-312	A5.22 E312T1-1/4		Z3323 TS312-FB1	66
Stall liess steels	WT-316L(P)	A5.22 E316LT0/1-1/4	D3612 YF316LC	Z3323 TS316L-FB0/1	67
	WT-316H	A5.22 E316HT1-1/4		Z3323 TS316H-FB1	68
	WT-317L	A5.22 E317LT1-1/4	D3612 YF317LC	Z3323 TS317-FB1	69
	WT-347	A5.22 E347LT1-1/4	D3612 YF347LC	Z3323 TS347-FB1	70
	WT-347H	A5.22 E347HT1-1/4			71
	WT-904L	A5.22 EC385T1-4			72
	WT-2209	A5.22 E2209T1-1/4		Z3323 TS2209-FB1	73
	WT-2553	A5.22 E2553T1-1/4		Z3323 TS2553-FB1	74
	WT-2594	A5.22 E2594T1-1/4			75
	WT-2595	A5.4 E2595			76
	WT-409Ti	A5.22 E409T0-G		Z3323 TS409-MA0	77
	WT-410	A5.22 E410T1-1/4		Z3323 TS410-FB1	78

	BRAND NAME	AWS	KS	JIS	PAGE
	WT-410NiMo	A5.22 E410NiMoT1-1/4		Z3323 TS410NiMo-FB1	79
	WT-430	A5.22 E430T1-G		Z3323 TS430-MA1	80
Stainless steels	WT-430LNb	A5.22 E430NbT0-4			81
	WT-436				82
	WT-439				83
	WT-625	A5.34 ENiCrMo3T1-1/4			84
	WT-276	A5.34 ENiCrMo4T1-4			85
	WT-82	A5.34 ENiCr3T1-1/4			86
	WT-133	A5.11 ENiCrFe-2			87
	WT-182	A5.34 ENiCrFe3T1-1/4			88
Ni base alloy	WT-NiCu7	A5.14M ENiCu-7			89
	WT-622	A5.34 ENiCrMo10T1-4			90
	WT-825	A5.14M ENiFeCr-1			91
	WT-45Ni				92
	WT-250H			Z3326 YF2A-C-250	93
	WT-350H			Z3326 YF2A-C-350	93
	WT-450H			Z3326 YF2A-C-450	93
Hardfacing	WT-600H			Z3326 YF3B-C-600	93
	WT-700H				93
	WT-800H				93
	WT-900B				93
	WT-H60C-O				93

2. SOLID WIRE

	BRAND NAME	AWS	KS	JIS	PAGE
Mild steel & 490MPa high tensile steels	WM-70A WM-70 WM-70G WM-80	A5.18 ER70S-3 A5.18 ER70S-6 A5.18 ER70S-G A5.18 ER80S-G	D7025 YGW16 D7025 YGW12 D7025 YGW15 D7025 YGW21	Z3312 YGW16 Z3312 YGW12 Z3312 YGW15 Z3312 G 57A 1 U C 3M1T	97 98 99 100

3. MIG WIRE

	BRAND NAME	AWS	KS	JIS	PAGE
	WMS-308	A5.9 ER308	D7026 Y308	Z3321 Y308	103
	WMS-308L	A5.9 ER308L	D7026 Y308L	Z3321 Y308L	103
	WMS-308LSi	A5.9 ER308LSi			104
	WMS-309	A5.9 ER309	D7026 Y309	Z3321 Y309	104
Stainless steels	WMS-309L	A5.9 ER309L	D7026 Y309L	Z3321 Y309L	105
	WMS-310	A5.9 ER310	D7026 Y310	Z3321 Y310	105
	WMS-312	A5.9 ER312	D7026 Y312	Z3321 Y312	106
	WMS-316	A5.9 ER316	D7026 Y316	Z3321 Y316	106
	WMS-316L	A5.9 ER316L	D7026 Y316L	Z3321 Y316L	107
	WMS-625	A5.14 ERNiCrMo-3	D7045 YNiCrMo-3	Z3334 YNiCrMo-3	107
	WMS-276	A5.14 ERNiCrMo-4	D7045 YNiCrMo-4	Z3334 YNiCrMo-4	108
Ni base alloy	WMS-82	A5.14 ERNiCr-3	D7045 YNiCr-3	Z3334 YNiCr-3	108
	WMS-CuNi	A5.7 ERCuNi	D7044 YCuNi-3	Z3341 YCuNi-3	109
	WMS-CuNi9		D7044 YCuNi-1	Z3341 YCuNi-1	109

4. TIG WIRE

	BRAND NAME	AWS	KS	JIS	PAGE
Mild steel & 490MPa	WTS-50	A5.18 ER70S-G	D7140 YGT50	Z3316 YGT50	113
high tensile steels	WTS-506	A5.18 ER70S-6	D7140 YGT50	Z3316 YGT50	113
	WTS-2209	A5.9 ER2209			114
	WTS-308	A5.9 ER308	D7026 Y308	Z3321 Y308	114
	WTS-308H	A5.9 ER308H			115
	WTS-308L	A5.9 ER308L	D7026 Y308L	Z3321 Y308L	115
	WTS-308LSi	A5.9 ER308LSi			116
	WTS-309	A5.9 ER309	D7026 Y309	Z3321 Y309	116
	WTS-309L	A5.9 ER309L	D7026 Y309L	Z3321 Y309L	117
	WTS-309LSi	A5.9 ER309LSi			117
	WTS-310	A5.9 ER310	D7026 Y310	Z3321 Y310	118
Stainless steels	WTS-312	A5.9 ER312	D7026 Y312	Z3321 Y312	118
	WTS-316	A5.9 ER316	D7026 Y316	Z3321 Y316	119
	WTS-316L	A5.9 ER316L	D7026 Y316L	Z3321 Y316L	119
	WTS-316LSi	A5.9 ER316LSi			120
	WTS-317L	A5.9 ER317L	D7026 Y317L	Z3321 Y317L	120
	WTS-347	A5.9 ER347	D7026 Y347	Z3321 Y347	121
	WTS-410	A5.9 ER410	D7026 Y410	Z3321 Y410	121
	WTS-420	A5.9 ER420			122
	WTS-430	A5.9 ER430	D7026 Y430	Z3321 Y430	122
	WTS-625	A5.14 ERNiCrMo-3	D7045 YNiCrMo-3	Z3334 YNiCrMo-3	123
	WTS-276	A5.14 ERNiCrMo-4	D7045 YNiCrMo-4	Z3334 YNiCrMo-4	123
Ni base alloy	WTS-82	A5.14 ERNiCr-3	D7045 YNiCr-3	Z3334 YNiCr-3	124
	WTS-CuNi	A5.7 ERCuNi	D7044 YCuNi-3	Z3341 YCuNi-3	124
	WTS-CuNi9		D7044 YCuNi-1	Z3341 YCuNi-1	125

5. SMAW

	BRAND NAME	AWS	KS	JIS	PAGE
	W 4301	A5.1 E6019	D7004 E4301	Z3211 E4319	129
	W 4303		D7004 E4303	Z3211 E4303	130
Mild steel &	W 6011	A5.1 E6011			131
490MPa	W 6013	A5.1 E6013	D7004 E4313	Z3211 E4313	132
high tensile steels	W 7016	A5.1 E7016	D7006 E5016	Z3211 E4916	133
	W 7018	A5.1 E7018	D7006 E5016	Z3211 E4916	134
	W 7048	A5.1 E7048	D7006 E5016	Z3211 E4948	135
For Low Alloy Heat	W 8016.B2	A5.5 E8016-B2	D7022 DT2316	Z3223 DT2316	136
Resistant Steels	W 9016.B3	A5.5 E9016-B3	D7022 DT2416	Z3223 DT2416	137
	W 7016N	A5.5 E7016-G	D7023 DL5016-6AP0	Z3211 E4916-GAP	138
For Low Temperature	W 8016G	A5.5 E8016-G		Z3211 E5516-GAP	139
Service Steels	W 8016C1	A5.5 E8016-C1	D7023 DL5016-6AP2	Z3211 E5516-N5 APL	140
	W 8016C2	A5.5 E8016-C2	D7023 DL5016-10AP3	Z3211 E4916-N7APL	141
	W-NF	A5.15 ENiFe-Cl	D7008 DFC NiFe	Z3252 DFC NiFe	142
For Cast Iron	W-NC	A5.15 ENi-Cl	D7008 DFC Ni	Z3252 DFC Ni	143
	W-EST	A5.15 ESt	D7008 DFC Fe	Z3252 DFC Fe	144
	W 308	A5.4 E308-16	D7014 E308-16	Z3221 ES308-16	145
	W 308L	A5.4 E308L-16	D7014 E308L-16	Z3221 ES308L-16	146
	W 309	A5.4 E309-16	D7014 E309-16	Z3221 ES309-16	147
	W 309L	A5.4 E309L-16	D7014 E309L-16	Z3221 ES309L-16	148
Stainless steels	W 309Mo	A5.4 E309Mo-16	D7014 E309Mo-16	Z3221 ES309Mo-16	149
Stanness steels	W 309MoL	A5.4 E309LMo-16	D7014 E309MoL-16	Z3221 ES309LMo-16	150
	W 316	A5.4 E316-16	D7014 E316-16	Z3221 ES316-16	151
	W 316L	A5.4 E316L-16	D7014 E316L-16	Z3221 ES316L-16	152
	W 310	A5.4 E310-16	D7014 E310-16	Z3221 ES310-16	153
	W 312	A5.4 E312-16	D7014 E312-16	Z3221 ES312-16	154
	W 625	A5.11 ENiCrMo-3	D7021 DNiCrMo-3	Z3224 DNiCrMo-3	155
Ni base alloy	W 276	A5.11 ENiCrMo-4	D7021 DNiCrMo-4	Z3224 DNiCrMo-4	156
	W 182	A5.11 ENiCrFe-3	D7021 DNiCrFe-3	Z3224 DNiCrFe-3	157

6. SUBMERGED ARC WELDING

	BRAND NAME	AWS	KS	JIS	PAGE
	WF-774 X WS-14	A5.17 F7A4 X EH14	B0531 S502-H	Z3183 S502-H	161
Mild steel &	WF-772 X WS-12K	A5.17 F7A2 X EM12K	B0531 S502-H	Z3183 S502-H	162
490MPa	WF-774 X WS-12K	A5.17 F7A4 X EM12K	B0531 S502-H	Z3183 S502-H	163
high tensile steels	WF-770 X WS-14	A5.17 F7A0 X EH14	B0531 S502-H	Z3183 S502-H	164
	WF-770 X WS-L8	A5.17 F7A0 X EL8	B0531 S502-H	Z3183 S502-H	165
Stainless steels	WF-300				166
ESW	WES-625 + WQ-625				167

7. ALUMINUM TIG & MIG

	BRAND NAME	AWS	KS	JIS	PAGE
	AL 1100	ER 1100			168
	AL 2319	ER 2319			168
	AL 4043	ER 4043			168
	AL 4047	ER 4047			168
	AL 4643	ER 4643			168
For Aluminum	AL 5180	ER 5180			168
	AL 5183	ER 5183			168
	AL 5356	ER 5356			168
	AL 5554	ER 5554			168
	AL 5556	ER 5556			168
	AL 5654	ER 5654			168

Be sure to follow safety practices stated in the following in order to protect welders, operators and accompanied workers from a serious accident resulting in injury or death.

- · Be sure to follow safety practices stated in the following when you use welding consumables.
- · Be sure to follow safety practices stated in the instruction manual of welding equipment when you use it.

Electric shock can kill.

- Do not touch live electrical parts (A covered electrode held with an electrode holder and a welding wire are electrically live).
- Wear dry, insulated gloves. Do not wear torn or wet gloves. Use an electric shock preventing device (e.g., open-ciruit-voltage-reducing device) when welders or operators work in confined or high-level spaces. Use also a lifeline when welders or operators conduct welding at a high-lever space.
- Follow safety practices stated in the instruction manual of welding machines before use. Do not use a
 welding machine the case or cover of which is removed. Welding cables must have an adequate size
 for the capacity expected. Welding cables must be repaired or replaced with new one.

Fumes and gases generated during welding are dangerous to your health.

Welding in confined spaces is dangerous because it can be a cause to suffocation by oxygen deficient.

- Keep your head out of the source of fumes or gases to prevent you from directly breathing high density fumes or gases.
- Use local exhaust ventilation, or wear respirators in order to prevent you from breathing fumes and toxic
 gases which cause toxication, poor health and suffocation by oxygen deficient.
- Use general ventilation during welding in a workshop. Particularly during welding in confined spaces, be sure to use adequate ventilation or respirators, and welding should be done at the presence of a trained supervisor.

- Do not conduct welding at where degreasing, solvent cleaning, spraying, or painting operations are carried out nearby. Welding work accompanied by these operations may cause generation of harmful gases.
- Use adequate ventilation or respirators with special attention during welding plated and coated steels.
- Use respirators, eye safety glasses and safety leather gloves when using welding fluxes in order to prevent you from flux dust.

CAUTION

Arc rays can injure eyes and burn skin.

- Wear hand shields with an adequate shade grade during welding operations and supervising the welding work. Select the correct shade grade for filter lenses and filter plates suitable for exact welding work by referring the standard JIS T81 41.
- Wear suitable protectors for protecting you from an arc ray; e.g., safety leather glove for welding, long sleeve shirt, foot cover, leather apron.
- Use, at need, shade curtains for welding by surrounding the welding areas in order to prevent accompanied workers from arc rays.

Fire and explosion can take place.

- Never conduct welding at areas adjacent to highly inflammable materials. Remove combustibles so that spatters cannot ignite them If combustibles cannot be removed, cover them with a noninflammable material.
- · Do not weld vessels or pipes which contain combustibles or being sealed.
- Do not put a hot weldment close to combustibles right after welding finished.
- When welding ceilings, floors, walls, remove combustibles put at the other side of them.
- Any part of a welding wire, with exception of the potion appropriately extended from the tip of the torch, must be free from touching the electrical circuit of the base metal side.
- Fasten cable joints and seal them with an insulation tape. The cable of the base metal side should be connected as close as possible to the welding portion of the work.
- Prepare fire-extinguishing equipment at where welding is carried out, in order to cope with a possible accident.

Flying spatter and slag can injure eyes and cause skin burns. High temperature heat of welding can cause skin burns.

- Wear safety glasses, safety leather glover for welding, long sleeve shirts, foot covers, leather aprons, etc.
- · Do not touch weldments while they are hot.

CAUTION

The tip of a welding wire and filler wire can injure eyes, faces, etc.

- . When take off the tip of a wire fastened in the spool, be sure to hold the tip of the wire.
- When check the wire feeding condition, do not direct the welding torch to your face.

CAUTION

Falling down or dropping welding consumables can injure you.

- Wear safety shoes and pay your attention not to drop welding consumables on your body when carrying and handling them. Keep yourself in a correct posture not to cause a crick in your back while handing them.
- . Follow the handling instructions shown on the surface of the pail pack wire packges when handle them.
- Pile up welding consumables in a correct way so as not to cause falling or dropping while they are stored or carried.

caution •

1. HANKOOK WELDTEK CO., LTD. does not accept responsibility for error or information which is found to be misleading.

2. Suggestions for, or descriptions of, the end use or application of products, or methods of working are for information only and HANKOOK WELDTEK CO., LTD., accepts no liability in respect thereof.

3. Prior to using products supplied or manufactured by HANKOOK WELDTEK CO., LTD., the purchaser should ensure that the products are suitable for the work being welded.

FLUX CORED ARC WELDING WIRES

Mild steel & 490MPa high tensile steels

High tensile steels

Self Shielded

Weather proof steels

Low-temperature steels

Heat-resistant, Low alloy steels

Q-PACK

WT - 71 Home (1997) - 5

Q-PACK

WT-71

Stainless steels Ni base alloy Hardfacing

KS D7104 YFW-C50DR AWS A5.36 E71T1-C1/M21A0-CS1-H8 JIS Z3313 T49J0T1-1C/MA-U H10

Applications

WT-71 is designed for welding of 50kgf/mm² class high tensile steel. All position welding of building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.

Characteristics on Usage

- · WT-71 is rutile type flux cored wire for all position welding.
- Compared with solid wire, good X-ray safety, spatter loss is low, bead appearance is beautiful and arc is soft with good stability.
- · Slag covering is uniform with good removal.
- · WT-71 has very efficient welding due to higher deposition rate.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F	Amp	180~340A	200~360A	200~420A
HF		180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S
0.04	1.29	0.55	0.013	0.010

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
548	580	28	76

Welding position

Approved by

KS, JIS, ABS, DNV-GL, KR, NK, LR, BV, CE, CWB

WT-71LF

KS D7104 YFW-C50DR AWS A5.36 E71T1-C1/M21A0-CS1-H8 JIS Z3313 T492T1-1C/MA-U H10

Applications

WT-71LF is designed for welding of 50kgf/mm² high tensile steel. All position welding of building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.

Characteristics on Usage

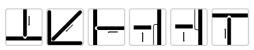
- · WT-71LF is the most widely used rutile type flux cored wire for all position welding.
- As deposition rate is higher than solid wire and manual metal arc electrode, highly efficient welding can be performed.
- · It provides low fume generation and has good impact strength at low temperatures.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)


Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S
0.04	1.35	0.55	0.02	0.01

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
521	576	28	75

Welding position

Approved by

KS, DNV-GL, PRS

WT-70 For 490MPa high tensile steel

KS D7104 YFW-C50DR AWS A5.36 E70T1-C1/M21A0-CS1-H8 JIS Z3313 T49J0T15-0C/MA-U H10

Applications

WT-70 is designed for welding of 50kgf/mm² class high tensile steel. Building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.

Characteristics on Usage

- · WT-70 has very efficient welding due to higher deposition rate.
- It is used for joining from mild tensile steels to 590MPa class high tensile steels, and is suitable for both fillet and butt welds.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F	Amp	180~340A	200~360A	200~420A
HF		180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S
0.05	1.43	0.64	0.012	0.011

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
538	580	27	66

Welding position

Approved by KS, JIS

WT-70T9 For 490MPa high tensile steel

Applications

WT-70T9 is designed for welding of $50 \text{kgf}/\text{mm}^2$ high tensile steel with outstanding mechanical properties.

Characteristics on Usage

- Typical applications include building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.
- · It is a flux cored wire for Flat & H-Fillet efficient welding with CO2 shielding gas.
- · It has better CVN toughness at low temperatures.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- · Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F	Amp	180~340A	200~360A	200~420A
HF		180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S
0.04	1.48	0.52	0.014	0.010

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y,S MPa	T,S MPa	EL(%)	CVN-Impact Value J (-30°C)
500	580	27	74

Applications

WT–70C is designed for welding of $50 \text{kgf}/\text{mm}^2$ high tensile steel with outstanding mechanical properties.

Characteristics on Usage

- Typical applications include building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.
- It is a metal cored wire for all-position welding with Ar+20~25%CO2 shielding gas.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Shielding gas should be used Ar+20~25%CO₂.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1,4	1.6
F	Amp	180~340A	200~360A	200~420A
HF		180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S
0.048	1.50	0.65	0.017	0.013

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (−30°C)
495	550	27	67

Welding position

Approved by

JIS, CWB, CE

Applications

Welding of galvanized steel sheets in the field of automobile manufacturing and galvanized steel in the structure of ships or construction as well.

Characteristics on Usage

- · WT-70Z is designed for the welding of low carbon and low alloy galvanized steel sheets.
- · It has the high deposition rates due to the higher weldability than a solid wire.
- · Especially it has good anti-porosity to zinc-primer plate and mill scale plate in fillet welding.

Notes on Usage

- · Shielding gas should be used 100%CO2.
- · Gas flow rate is proper 20~25l/min.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F	٨٣٥	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S
0.09	1.33	0.45	0.022	0.013

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (0°C)
544	595	29	76

WT-70T5 For 490MPa high tensile steel

KS D7104 YFW-A502B AWS A5.36 E70T5-C1/M21A2-CS1-H4 JIS Z3313 T493T5-OC/MA H5

Applications

WT-70T5 is designed for welding of 50kgf/mm² class high tensile steel, low alloy steel. Building, shipbuilding, bridges, machinery, vehicles, offshore structures and general fabrications.

Characteristics on Usage

- · It is a fully basic type flux cored wire for flat and horizontal position welding.
- It has good CVN toughness at low temperatures and weldability is excellent with lower crack susceptibility.

Notes on Usage

- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100% CO2 or Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F	٨٣٥	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

С	Mn	Si	Р	S
0.05	1.24	0.50	0.015	0.012

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-40°C)
465	540	29	125

Applications

WT-70SL is a metal cored wire for high speed single or twin tandem welding application in the flat and horizontal fillet position. This wire benefits from high deposition rate and is widely used for shipbuilding, construction of bridge, and structural fabrication.

Characteristics on Usage

- · WT-70SL has very low spatter loss rate and minimum amount of slag.
- · It gives excellent penetration and good arc stability.
- Especially has good anti-porosity to zinc-primer plate and mill scale plate in high speed single and twin tandem fillet welding.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F & HF	Amp	120~300A	300~400A	350~450A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S
0.05	1.63	0.54	0.013	0.011

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
545	620	28	66

Welding position

Approved by KS

KS D7104 YFW-C50DM AWS A5.36 E70T1-C1/M21A0-CS1-H8 JIS Z3313 T49J0T1-0C/MA-U H10

Applications

It is designed for welding of 490MPa high tensile steel with outstanding mechanical properties. Typical applications include machinery, shipbuilding, offshore, offshore structures, bridges and general fabrications.

Characteristics on Usage

- · It is a metal cored wire for flat and horizontal position welding.
- It has good porosity resistance and is applicable for fillet welding of inorganic zinc-primer coated steels.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F	Amo	140~300A	160~360A	180~420A
HF	Amp	180~300A	180~350A	220~400A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S
0.04	1.25	0.40	0.014	0.010

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
515	557	29	85

Welding position

Approved by KS, JIS

Applications

WT-81 is designed for welding of 590MPa high tensile steel with slow freezing slag system. Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- · WT-81 is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni	Мо
0.03	1.27	0.48	0.014	0.011	0.97	0.20

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
551	625	28	70

Welding position

Approved by

KS, JIS

KS D7104 YFW-C602R AWS A5.36 E80T1-C1/M21A2-Ni1-H8 JIS Z3313 T573T1-0C/MA-N2-H10

Applications

WT-80 is designed for welding of 590MPa high tensile steel. Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- It has very efficient welding due to higher deposition rate particularly and also has easy slag removal.
- It is used for joining from mild tensile steels to 590MPa class high tensile steels, and is suitable for both fillet and butt welds.
- Overall welding characteristics except tensile strength is very similar with the WT-70.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F	Amp	180~340A	200~360A	200~420A
HF	Апр	180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.03	1.22	0.38	0.014	0.011	0.94

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
573	623	28	82

Welding position

Approved by KS

WT-81Ni2

For 590MPa high tensile steel

Applications

It is designed for welding of 590MPa high tensile steel with outstanding mechanical properties. Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding with 2.0% Ni component.
- It feature excellent mechanical properties, easy slag removal, low spatter generation, smooth bead shape and high X-ray safety.

Notes on Usage

- . Proper preheating (50~150°C) (122~302°F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- . Gas flow rate is proper 20~25ℓ/min.
- . Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F		200~280A	240~300A	240~380A
HF	Amp	200~280A	240~300A	240~380A
V–up, OH		150~230A	180~230A	170~240A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.03	1.18	0.35	0.012	0.010	2.01

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-40°C)
585	675	24	125

AWS A5.28 E80C-GM

Applications

It is designed for welding of 590MPa high tensile steel with outstanding mechanical properties. Typical applications include machinery, pressure vessels and creep resistance of high temperature.

Characteristics on Usage

- · It is a metal cored wire for flat and horizontal position welding.
- Slag quantity is almost the same as a solid wire and multiple pass welding can be performed without removing slag.

Notes on Usage

- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F & HF	Amp	160~300A	180~360A	260~460A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni
0.04	1.50	0.46	0.012	0.010	0.50

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
612	679	27	52

WT-81TG

AWS A5.29 E81T1-GC JIS Z3313 T550T1-1CA-U H10

For 590MPa high tensile steel

Applications

It is designed for welding of 590MPa high tensile steel with outstanding mechanical properties. Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- It feature excellent mechanical properties, easy slag removal, low spatter generation, smooth bead shape and high X-ray safety.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F		200~280A	240~300A	240~380A
HF	Amp	200~280A	240~300A	240~380A
V–up, OH		150~230A	180~230A	170~240A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Ni
0.05	1.45	0.48	0.013	0.011	0.40

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
555	610	29	110

AWS A5.29 E80T1-G JIS Z3313 T552T15-0CA-N2 H10

Applications

As a metal cored wire, Butt and fillet welding of steel structures using 590MPa classhigh tensile steel such as construction machinery, buildings and bridges.

Characteristics on Usage

- · It is a metal cored wire which produces smooth arc characteristics.
- It is used forjoining from mild tensile steels to 590MPa class high tensile steels, and is suitable for both filletand but welds, providing high deposition rates, combined with minimal spatter and excellent slagrelease
- · It has good anti-porosity to zinc-primer plate and mill scale plate in fillet welding.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1,2	1.4	1.6
F & HF	Amp	200~300A	300~350A	300~350A

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.06	1.47	0.53	0.015	0.010	0.98

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
595	631	25	55

Applications

WT-91 is designed for welding of 620MPa high tensile steel for low temperature service. Typical industrial applications include shipbuilding, machinery, piping, bridge, structural fabrication and building.

Characteristics on Usage

- · WT-91 is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Ni	Мо
0.05	1.24	0.42	0.012	0.010	0.97	0.21

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
588	672	26	105

WT-90 For 620MPa high tensile steel

KS D7104 YFW-C602R AWS A5.36 E90T1-C1/M21AG-G-H4 JIS Z3313 T624T1-0C/MAP-N2 H5

Applications

WT-90 is designed for welding of 620MPa high tensile steel. Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- It has very efficient welding due to higher deposition rate particularly and also has easy slag removal.
- It is used for joining from mild tensile steels to 620MPa class high tensile steels, and is suitable for both fillet and butt welds.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- · Shielding gas should be used 100%CO2 or Ar+20~25% CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F	٨٣٥	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Ni	Мо
0.05	1.32	0.42	0.012	0.011	0.92	0.17

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
563	675	26	86

WT-100K3

For 70kgf/mm2 high tensile steel

Applications

WT-100K3 is designed for welding of 690MPa high tensile steel for low temperature service. Typical applications include pipe line, wear resistance steel such as API 5L, X70, X80, EN 10208-2 L480, L550, EN 10137-2 S550, S620.

Characteristics on Usage

- · It is a rutile type flux cored wire for flat and horizontal position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used Ar+20~25%CO₂.

Position	Dia(mmØ)	1.2	1.4	1.6
F	Amp	180~340A	200~360A	200~420A
HF	Anp	180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni	Мо
0.03	1.70	0.45	0.012	0.009	1.53	0.36

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
682	762	20	125

WT-111K3

For 80kgf/mm2 high tensile steel

AWS A5.36 E111T1-1C/M21A0-K3-H4 JIS Z3313 T762T1-1C/MA-N3M2 H5

Applications

WT-111K3 is designed for welding of 760MPa high tensile steel with outstanding mechanical properties.

Typical applications include high tensile steels that will be used a low temperature environment,

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- · It provides excellent impact values at low temperature.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25l/min.
- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni	Мо
0.04	1.78	0.36	0.011	0.005	2.03	0.36

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
767	802	20	114

Welding position

Approved by

WT-115

AWS A5.36 E110T5-M21A6-K4-H4 JIS Z3313 T765T5-0MA-N4C1M2 H5

For 80kgf/mm2 high tensile steel

Applications

WT-115 is designed for welding of 760MPa high tensile steel with outstanding mechanical properties.

Typical applications include low alloy steel, quenched and tempered high strength steels.

Characteristics on Usage

- · It is a fully basic type flux cored wire for flat and horizontal position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used Ar+20~25%CO₂.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F	Amp	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Cr	Ni	Мо
0.03	1.47	0.35	0.46	1.96	0.41

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-50°C)
811	856	19	51

Welding position

Approved by JIS

WT-110K4

For 760MPa high tensile steel

Applications

WT-110K4 is designed for welding of 760MPa high tensile steels. It is intended for single and multiple pass welding of certain carbon and low alloy steels.

Characteristics on Usage

- · WT-110K4 is a premium, composite metal cored wire, exhibiting superb welder
- . appeal and outstanding mechanical properties.

There are many advantages in using composite metal cored, such as faster travel speeds, leading to increased productivity.

 It is ideal for those applications where the slag residue and fume emissions of flux cored wire are unwanted.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- The recommended shielding gas is argon-carbon dioxide mixtures within the range of 75% to 95% argon.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F & HF	Amp	180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni	Cr	Мо
0.03	1.52	0.65	0.008	0.010	2.16	0.60	0.60

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-50°C)
711	800	22	40

WT-110CG

For 760MPa high tensile steel

Applications

It is designed for welding of 760MPa high tensile steel. Single and multipass welding of high strength low alloy steels,

Characteristics on Usage

 It is a metal cored wire which provides an exceptionally smooth and stable arc, spatter and minimal slag coverage.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- · Gas flow rate is proper 20~25l/min.
- Shielding gas should be used Ar+20~25%CO₂.

Position	Dia(mmØ)	1.2	1,4	1.6
F & HF	Amp	220~290A	300~400A	350~450A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni
0.04	1.80	0.68	0.013	0.014	2.02

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-50°C)
765	820	21	49

WT–71GS

For 490MPa high tensile steel (Self-Shielded)

KS D7104 YFW-S50GB AWS A5.36 E71TG-AZ-GS-H8 JIS Z3313 T49TG-1NS-G

Applications

WT-71GS is designed for welding of 50kgf/mm² class high tensile steel and self-shielded wire to facilitate welding outdoors.

It is used where light structures, short assembly welds, other general fabrications and galvanized steel fixtures, gate etc.

Characteristics on Usage

 It has good arc stability, low spatter generation, high efficiency, good bead shape and slag removal.

Notes on Usage

- · It has to use DCEN (electrode negative).
- · Do not use shielding gas.

Position	Dia(mmØ)	1,2	1.6
F		100 1004	0.40 0.000 4
HF	Amp	120~180A	240~280A
V–up, OH		100~	160A

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S	AI
0.15	0.65	0.2	0.013	0.006	2.1

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
495	534	24

For 490MPa high tensile steel (Self-Shielded, multi pass)

Applications

WT-71T11 is designed for welding of 50kgf/mm² class high tensile steel and self-shielded wire to facilitate welding outdoors.

(ASTM A36 Gr.All; A109 Gr. All; A283 Gr. A, B, C, D; A284 C,D;A285 Gr. A, B, C;A288 Gr. 1; A372 type I;A500 Gr. All; A501 Gr. All)

Characteristics on Usage

 It has good arc stability, low spatter generation, high efficiency, good bead shape and slag removal.

Notes on Usage

- · It has to use DCEN (electrode negative)
- · Do not use shielding gas.

Sizes Available and Recommended Currents (DC -)

Position	Dia(mmØ)	1.2	1.6
F		100 1001	0.40 0.000
HF	Amp	120~180A	240~280A
V–up, OH		100~	160A

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S	AI
0.15	0.65	0.2	0.013	0.006	1.50

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
512	565	22

For 490MPa high tensile steel (Self-Shielded)

Applications

Structural fabrication, including those subject to seismic requirements. Ship and barge fabrication, General plate fabrication.

Characteristics on Usage

- · Self shielded: easiest equipment arrangement.
- Due to new production technology and formulation: welder friendly wire with wide range
 of parameter settings.
- Forgiving arc, with increased penetration gives better quality welds with great bead appearance.
- · High deposition rate, even in out of position welding.
- · Good impact values.

Notes on Usage

- · It has to use DCEN (electrode negative)
- · Do not use shielding gas.

Sizes Available and Recommended Curr	rents (DC –)
--------------------------------------	---------------

Position	Dia(mmØ)	1.2	1.6	
F		100 1001	0.40, 000.4	
HF	Amp	120~180A	240~280A	
V–up, OH		100~160A		

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	AI
0.15	0.65	0.21	0.011	0.002	0.58

Typical Mechanical Properties of All-Weld Metal

Y.S N/mm ²	T.S N/mm ²	EL (%)
452	576	26

For 490MPa high tensile steel (Self-Shielded)

Applications

It is designed for welding of 490MPa high tensile steel and self-shielded wire to facilitate welding of outdoors.

Typical applications include machinery, shipbuilding, offshore structures, bridges and general fabrications.

Characteristics on Usage

- It has good arc stability, low spatter generation, high efficiency, good bead shape and slag removal.
- · It has to use DECP (electrode positive).

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25l/min.

Position	Dia(mmØ)	1.2	1,4	1.6
F		120~300A	150~350A	180~400A
HF	Amp	120~300A	150~350A	180~340A
V–up, OH		120~260A	150~270A	180~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	AI
0.16	0.82	0.20	0.012	0.007	1.30

Typical Mechanical Properties of All-Weld Metal

Y.S N/mm ²	T.S N/mm ²	EL (%)
470	542	24

WT-71W For atmospheric corrosion resisting steel

KS D7109 YFA-50W JIS Z3320 YFA-50W

Applications

WT-71W is designed all position welding of 490MPa weather-proof steels.

Characteristics on Usage

- · The weld metal contain Cr- Ni- Cu alloys and has good weather-proof properties.
- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Gas flow rate is proper 20~25l/min.
- · Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~300A	180~340A	200~380A
HF	Amp	180~300A	180~340A	200~380A
V–up, OH		160~260A	160~280A	180~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Cu
0.05	1.10	0.53	0.014	0.011	0.55	0.48	0.42

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
510	580	28	42

WT-81W

For atmospheric corrosion resisting steel

Applications

WT-81W is designed all position welding of 560MPa weather-proof steels.

Characteristics on Usage

- · The weld metal contain Cr- Ni- Cu alloys and has good weather-proof properties.
- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~300A	180~340A	200~380A
HF	Amp	180~300A	180~340A	200~380A
V–up, OH		160~260A	160~280A	180~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Cr	Ni	Cu
0.04	1.20	0.54	0.014	0.011	0.54	0.58	0.45

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
550	630	28	50

WT-80CW For atmospheric corrosion resisting steel

KS D7109 YFA-58W AWS A5.29 E80T1-W2C JIS Z3320 YFA-58W

Applications

WT-80CW is designed for welding of 590MPa weather-proof steel. It is intended for use on low alloy weathering grade steels such as A588, A242, etc.

Characteristics on Usage

- It is a metal cored wire with superior pit resistance in welding of inorganic zinc-rich primer coated steel.
- It is suitable for automation and high efficiency of horizontal fillet welding of ships, bridges, etc. because high speed welding is possible due to fast welding speed.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.

Position	Dia(mmØ)	1.2	1.4	1.6
F & HF	Amp	180~300A	180~340A	200~380A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Cu
0.04	1.30	0.71	0.015	0.010	0.51	0.55	0.54

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
540	610	27	48

Welding position

Α

W

For 490MPa low temperature service steel

KS D7104 YFL-C503R AWS A5.36 E71T9-C1/M21A2-CS1-H4 I JIS Z3313 T494T1-1C/MA-U H5

Applications

WT-71T9 is designed for welding of 490MPa a low temperature steels. It can be used in a variety of applications including railcar, automotive, machinery, shipbuilding, bridges, heavy equipment etc.

Characteristics on Usage

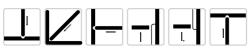
- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- Its design achieves low temperature impacts and can be used in semiautomatic and automatic applications.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- Gas flow rate is proper 20~25l/min.
- Shielding gas should be used 100%CO2 or Ar+20 \sim 25% CO2.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A


Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.04	1.34	0.48	0.014	0.008	0.04

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T,S MPa	EL(%)	CVN-Impact Value J (-30°C)
510	585	28	121

Welding position

Approved by

JIS, CWB

WT-71SR For 490MPa low temperature service steel

KS D7104 YFL-C504R AWS A5.36 E71T12-C1A4-CS2-H4 JIS Z3313 T494T1-1CAP H5

Applications

WT-71SR is designed for welding of 490MPa a low temperature steels.(NACE/API steel) It can be used in a variety of applications including railcar, automotive, machinery, shipbuilding, bridges, heavy equipment etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- It is design good impact value at low temperatures down to −40°C in PWHT conditions.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- One-side welding defects such as hot cracking may occur with wrong welding parameter such as high welding speed.
- · Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.05	1.21	0.41	0.011	0.009	0.40

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-40°C)	PWHT
552	598	26	142	AW
521	576	27	138	620℃×2hr

Welding position

Approved by

JIS, ABS, DNV-GL

WT-71SRM

For 490MPa low temperature service steel

KS D7104 YFL-M504R AWS A5.36 E71T12-M21A4-CS2-H4 JIS Z3313 T494T1-1MAP-H5

Applications

It is designed for welding of 490MPa high tensile steels with Ar+20%CO₂ shielding gas. Typical applications include railcar, automotive machinery, shipbuilding, bridges, heavy equipment etc.

Characteristics on Usage

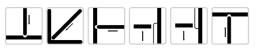
- · It is a rutile type flux cored wire for all-position welding.
- · It features excellent mechanical properties, easy slag removal, low spatter generation.
- It is designed good impact value at low temperatures down to −40°C in PWHT conditions.

Notes on Usage

- Proper preheating (50~150°C) (122~302° F) and interpass temperature must be used in order to release hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used Ar+20~25%CO₂.

Position	Dia(mmØ)	1.2	1,4	1.6
F		120~300A	150~350A	180~400A
HF	Amp	120~300A	150~350A	180~340A
V–up, OH		120~260A	150~270A	180~280A

Sizes Available and Recommended Currents (DC +)


Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni
0.04	1.42	0.50	0.012	0.014	0.37

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-40°C)	PWHT
582	611	30	120	AW
516	586	30	102	620℃×2hr

Welding position

Approved by

JIS, CE, ABS, DNV-GL, CWB

KS D7104 YFL-C506M AWS A5.36 E80T1-C1/M21A8-K2-H4 JIS Z3313 T556T1-0C/MA-N3-U H5

Applications

WT-80K2 is designed for welding of 590MPa high tensile steel for low temperature service. Typical applications include offshore structures, LNG and LPG carriers and storage tank.

Characteristics on Usage

WT-80K2

For 590MPa low temperature service steel

- · It is a metal cored wire for flat and horizontal position welding.
- The weld metal contain about 1.5%Ni, so good impact value at low temperatures down to -60°C.
- It features good porosity resistance and easy slag removal and deposition rate is higher than a titania type.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Shielding gas should be used 100%CO₂ or Ar+20~25%CO₂.

Position	Dia(mmØ)	1.2	1,4	1.6
F	4.555	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.04	1.49	0.42	0.013	0.010	1.50

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-60°C)
550	630	26	55

WT-81K2

For 590MPa low temperature service steel

KS D7104 YFL-C506R AWS A5.36 E81T1-C1/M21A8-K2-H4 JIS Z3313 T556T1-1C/MA-N3-U H5

Applications

WT-81K2 is designed for welding of 590MPa high tensile steel for low temperature service. Typical applications include offshore structures, LNG and LPG carriers and storage tank.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- The weld metal contain about 1.5%Ni, so good impact value at low temperatures down to −60°C.
- · It features good porosity resistance and easy slag removal.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- Shielding gas should be used 100%CO₂ or Ar+20~25%CO₂.

Position	Dia(mmØ)	1.2	1.4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Ni
0.05	1.05	0.38	0.013	0.010	1.50

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-60°C)
540	610	28	70

Welding position

Approved by

JIS

KS D7104 YFW-C604R AWS A5.36 E91T1-C1/M21A8-K2-H4 JIS Z3313 T624T1-1C/MA-N3M1-U H5

Applications

WT-91K2 is designed for welding of 620MPa high tensile steel for low temperature service. Typical applications include offshore structures, LNG and LPG carriers and storage tank.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- The weld metal contain about 1.5%Ni, so good impact value at low temperatures down to -60°C.
- · It features good porosity resistance and easy slag removal.

Notes on Usage

- Proper preheating(50~150°C) and interpass temperature must be used in order to release diffusible hydrogen which may cause cracking in weld metal when electrodes are used for medium and heavy plates.
- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Ni
0.05	1.24	0.38	0.013	0.011	1.55

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-60°C)
603	645	27	83

Welding position

Approved by

WT-81A1 For heat-resisting steel (0,5%Mo)

Applications

WT-81A1 is designed for welding of 0.5% Mo steel used for high pressure vessels, oil refining industries, steam pipes of boilers etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- The weld metal contain about 0.5% Mo, so it has good crack and heat resistance.

Notes on Usage

- · Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.
- Preheat at 150~200℃ and PWHT at 620℃.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Мо
0.06	0.84	0.46	0.016	0.011	0.52

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y,S MPa	T,S MPa	EL(%)	PWHT
543	612	25	620°C × 1hr

Welding position

F

С

W

WT-81B2 For heat-resisting steel (1.25%Cr-0.5%Mo)

KS D7121 YF1CM-C AWS A5.36 E81T1-C1PZ-B2-H8 JIS Z3318 YF1CM-C

Applications

WT-81B2 is designed for welding of 1.25%Cr-0.5%Mo steel used for high pressure vessels, oil refining industries, steam pipes of boilers etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- The weld metal contain about 1.25%Cr, 0.5%Mo, so it has good crack and heat resistance.

Notes on Usage

- · Gas flow rate is proper 20~25ℓ/min.
- · Shielding gas should be used 100%CO2.
- Preheat at 150~200℃ and PWHT at 690℃.

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Cr	Мо
0.07	0.82	0.42	0.016	0.015	1.18	0.51

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	PWHT
569	648	22	690℃×1hr

WT-85B2 For heat-resisting steel (1.25%Cr-0.5%Mo)

Applications

WT-85B2 is designed for welding of 1.25%Cr-0.5%Mo steel used for high pressure vessels, oil refining industries, steam pipes of boilers etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- The weld metal contain about 1.25%Cr, 0.5%Mo, so it has good crack and heat resistance.

Notes on Usage

- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used Ar+20~25%CO₂.
- Preheat at 150~200℃ and PWHT at 690℃.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1,4	1.6
F	Amp	180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Мо
0.07	0.85	0.48	0.014	0.013	1.15	0.52

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)	PWHT
532	627	24	690℃×1hr

WT-81B6

AWS A5.36 E81T1-M21PZ-B6-H8 JIS Z3318 T55 T1-1M-5CM

Applications

WT-81B6 is designed for welding of 5%Cr-0.5% Mo steel used for high pressure vessels, Oil refining industries, steam pipes of boilers etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It has excellent creep rupture strength, easy slag removal and good weld soundness.
- The weld metal contain about 5%Cr, 0.5% Mo, so it has good crack and heat resistance.

Notes on Usage

- Gas flow rate is proper 15~25mℓ.
- Shielding gas should be used Ar+20~25%CO₂.
- Preheat at 150~200℃ and PWHT at 745℃.

Position	Dia(mmØ)	1,2	1.6
F		200~340A	300~420A
HF	Amp	200~340A	300~420A
V–up, OH		160~260A	200~300A

Size Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Мо
0.05	0.44	0.58	0.07	0.010	4.55	0.48

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S N/mm ²	T.S N/mm ²	EL (%)	PWHT
558	558 672		745℃ X 2hr

WT-81B8 For 9Cr-1Mo steels

Applications

WT-81B8 is designed for welding of 9%Cr-1%Mo steel such as A335-P9 piping and A213-T9 tubing.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It has easy slag removal and good weld soundness.
- The weld metal contain about 9%Cr-1%Mo, so excellent creep rupture strength.

Notes on Usage

- · Gas flow rate is proper 15~25mℓ.
- Shielding gas should be used Ar+20~25%CO₂.
- Preheat at 150~200℃ and PWHT at 745℃.

Size Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.6
F		200~340A	200~420A
HF	Amp	200~340A	200~420A
V–up, OH		120~220A	160~280A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Cr	Ni	Мо	Cu	N
0.08	0.52	0.32	9.3	0.3	1.05	0.11	0.02

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S N/mm ²	T.S N/mm ²	EL (%)	PWHT
542	665	21	745℃ X 2hr

Applications

WT-91B3 is designed for welding of 2.25%Cr-1.0%Mo steel used for high pressure vessels, oil refining industries, steam pipes of boilers etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It provides smooth arc, low spatter levels, good weldability and good bead appearance.
- The weld metal contain about 2.25%Cr, 1.0%Mo, so it has good crack and heat resistance.

Notes on Usage

- Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used 100%CO₂.
- Preheat at 150~300°C and PWHT at 690°C.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1,2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Мо
0.06	0.62	0.48	0.019	0.010	2.30	1.05

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	PWHT
590	660	22	690℃ X 1hr

WT-91B9

For heat-resisting steel (9%Cr-1%Mo-V)

Applications

WT-91B9 is designed for welding of 9%Cr-1%Mo-V steel used for high pressure vessels, oil refining industries etc.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- · It has easy slag removal and good weld soundness.
- · The weld metal contain about 9%Cr-1%Mo-V, so excellent creep rupture strength.

Notes on Usage

- · Gas flow rate is proper 20~25ℓ/min.
- Shielding gas should be used Ar+20~25%CO₂.
- · Preheat at 200~300℃ and PWHT at 760℃.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1,4	1.6
F		180~340A	200~360A	200~420A
HF	Amp	180~340A	200~360A	200~420A
V–up, OH		120~220A	140~260A	160~280A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Cr	Ni	Мо	V	Nb
0.09	0.66	0.20	9.1	0.49	1.0	0.20	0.05

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)	PWHT
635	710	22	760℃×2hr

WT-307P For 13%Mn steels, cladding carbon steels

AWS A5.22 E307T0-1/4 JIS Z3323 TS307-FB1

Applications

WT-307P is designed for welding dissimilar steels, 13%Mn steels with reduced weldability and for cladding carbon steels.

Characteristics on Usage

- · WT-307P is a rutile type flux cored wire with a hot cracking resistant austenitic weld metal.
- The weld metal has an excellent crack resistance, even when welding steels with very poor weldability.
- This wire is designed for welding dissimilar steels, 13Mn steels with reduced weldability and for cladding carbon steels. Can also be used as a buffer layer prior to hard surfacing.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Welders for solid wire can be used but as wire is softer than solid wire, pay full attention to adjust feeding roller and do not tighten them excessively.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	170~270	25~30	10~20
1.6	200~350	25~30	15~25

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.08	4.09	0.81	0.022	0.009	19.01	9.45	0.82

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	IV J (−20°C)
476	594	40	86

Welding position

Approved by

Α

WT-308L(P) For 18%Cr-8%Ni stainless steel

KS D3612 YF308LC AWS A5.22 E308LT0/1-1/4 JIS Z3323 TS308L-FB0/1

Applications

WT-308L(P) is designed for the welding of low carbon 18%Cr-8%Ni stainless steels.

Characteristics on Usage

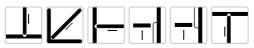
- · WT-308L is a rutile type flux cored wire for flat and horizontal position welding.
- WT-308LP is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	130~240	25~30	10~20
1.6	170~290	25~30	15~25

Sizes Available and Recommended Currents (DC +)


Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

	С	Mn	Si	Р	S	Cr	Ni	Ferrite No
WT-308L	0.03	1.35	0.65	0.020	0.010	19.6	9.6	8
WT-308LP	0.03	1.38	0.62	0.022	0.009	19.8	9.8	10

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

	Y.S MPa	T.S MPa	EL(%)	Ⅳ J (−20℃)
WT-308L	431	570	40	48
WT-308LP	422	572	41	46

Welding positions

Approved by

ABS, DNV-GL, JIS, CE

WT-308H For 18%Cr-8%Ni stainless steel

AWS A5.22 E308HT1-1/4 JIS Z3323 TS308H-FB1

Applications

WT-308H is designed for MAG welding of 18%Cr-8%Ni stainless steels.

Characteristics on Usage

- · It is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ and Ar+20 \sim 25%CO₂ for welding.
- · Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	130~240	25~30	10~20
1.6	170~290	25~30	15~25


Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Cr	Ni
0.08	1.21	0.61	0.018	0.005	19.6	9.9

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S N/mm ²	T.S N/mm ²	EL (%)	IV J (−20°C)
431	575	40	46

WT-309L(P)

For 22%Cr-12%Ni stainless steel

Applications

WT-309L(P) is designed for the welding of dissimilar metals such as stainless steels and carbon steels or stainless steels and low alloy steels.

Characteristics on Usage

- · WT-309L is a rutile type flux cored wire for flat and horizontal position welding.
- · WT-309LP is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25l/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	150~280	25~33	10~20
1.6	200~350	25~33	15~25

Sizes Available and Recommended Currents (DC +)

	С	Mn	Si	Р	S	Cr	Ni	Ferrite No
WT-309L	0.035	1.30	0.75	0.022	0.009	22.80	12.30	18
WT-309LP	0.029	1.33	0.64	0.019	0.011	23.30	12.80	20

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

	Y.S MPa	T.S MPa	EL(%)	IV J (–20°C)
WT-309L	432	590	37	50
WT-309LP	436	593	38	48

Welding positions

Approved by ABS, DNV-GL, JIS, CE

AWS A5.22 E309HT1-1/4 JIS Z3323 TS309H-FB1

Applications

WT-309H is designed for the welding of dissimilar metals such as stainless steels and carbon steels or stainless steels and low alloy steels.

Characteristics on Usage

- · WT-309H is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ and Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25l/min.

Dia(mmØ)	mØ) Current(A) Voltage(V)		Electrode extension(mm)
1.2	150~280	25~33	10~20
1.6	200~350	25~33	15~25

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni
0.06	1.29	0.61	0.020	0.007	23.1	12.9

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S N/mm ²	T.S N/mm ²	EL (%)	IV J (−20°C)
442	589	39	51

WT-309MoL

Applications

Main uses are for the applications of resistance to heat and corrosion and for the joining of stainless steels to mild or low alloy steels.

Characteristics on Usage

- · WT-309MoL is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- Weld metals contain comparatively much more ferrite in their austenitic, therefore they
 provide better weldability together with superior heat resistance, and corrosion resistance.

Notes on Usage

16

- \cdot The shielding gas should be used 100%CO2 or Ar+20 ${\sim}25\%CO2$ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ) Current(A) Voltage(V) Electrode extension(mm) 1.2 150~300 24~33 10~20

Sizes Available and Recommended Currents (DC +)

200~400

С	Mn	Si	Р	S	Cr	Ni	Мо
0.035	1.20	0.60	0.017	0.010	22.80	13.30	2.50

 $24 \sim 30$

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y,P MPa	T.S MPa	EL(%)	IV J (−20°C)
550	680	33	40

Welding positions

Approved by

15~25

Applications

Main uses are for thin plate stainless steels and for the welding of automotive mufflers in 22%Cr-12%Ni stainless steels.

Characteristics on Usage

- WT-M309L is a metal cored wire for welding of 22%Cr-12%Ni steel, heat resistant cast steel and for the joining of chrome nickel clad steels to Cr-Mo steel or mild steel. This wire is designed for flat and horizontal fillet welding.
- It is weld metal contains ferrite in austenitic structure, it gives excellent weldability, good corrosion and heat resistance.

Notes on Usage

- The shielding gas should be used Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	mØ) Current(A) Voltage(V)		Electrode extension(mm)
1.2	170~270	25~30	10~20
1.6	200~350	25~30	15~25

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni
0.03	1.71	0.55	0.020	0.009	24.1	12.6

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	Ⅳ J (−20℃)
440	575	42	58

WT-309LNb

Applications

WT–309LNb is suitable for the first layer on mild or low alloy steel prior to overlaying with WT–347 and WT–347H.

Characteristics on Usage

- WT-309LNb is a rutile type flux cored wire for all-position welding. This wire deposits low carbon weld with 24%Cr-13%Ni and Niobium to minimize the risk of sensitization.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.

Notes on Usage

- The shielding gas should be used 100%CO2 and Ar+20 $\sim\!25\%CO_2$ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	nmØ) Current(A) Voltage(V)		Electrode extension(mm)
1.2	150~280	25~33	10~20
1.6	200~350	25~33	15~25

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Cr	Ni	Nb
0.03	1.09	0.58	0.012	0.005	24.2	12.5	0.8

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	IV J (0°C)
484	602	34	70

AWS A5 22 F310T0-1/4 JIS Z3323 TS 310-FB1

Applications

WT-310 is designed for MAG welding of 310S stainless steels.

Characteristics on Usage

- · WT-310 is a rutile type flux cored wire for flat and horizontal position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance, better slag removal, and less quantity of welding fume comparable to solid wire.
- The weld metal provide better weldability together with superior heat resistance, and corrosion resistance

Notes on Usage

- The shielding gas should be used $100\%CO_2$ or Ar+ $20\sim25\%CO_2$ for welding.
- Gas flow rate is proper 20~25l/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	130~200	25~33	10~20	
1.6	170~250	25~33	15~25	

Sizes Available and Recommended Currents (DC +)

Typical Chemical Cor	mposition of All-Weld	d–Metal (wt%) (Sł	nielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.05	1.83	0.61	0.020	0.006	25.5	21.1	0.08

Typical Mechanical Properties of All-Weld-Metal (Shielding gas: MIX)

Y.P MPa	T.S MPa	EL(%)	Ⅳ J (−20℃)
470	610	34	45

Welding positions

Approved by

Α

W

Applications

WT-312 is designed for MAG welding of 30%Cr-9%Ni stainless steels and it is used for joining dissimilar steels, steels with reduced weldability and buffer layer prior to hardfacing (rolls, forging dies, hotwork tools, dies for plastics and so on)

Characteristics on Usage

- · WT-312 is a rutile type flux cored wire for all-position welding.
- It provides the excellent usability with stable arc, less spattering, good bead appearance as the same as that of a sold MIG wire.
- It has resistance to stress corrosion and highly insensitive to dilution and good scaling resistance up to 1150°C.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25l/min.
- When heat input is excessive, base metal will be bended or distorted due to the bad heat conductivity. Therefore perform welding with selecting proper heat input,

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	130~220	25~30	10~20	
1.6	170~250	25~30	15~25	

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.10	1.20	0.70	0.024	0.006	28.3	9.4	0.10

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)
610	780	25

Welding positions

Approved by

WT-316L(P) For 18%Cr-12%Ni-2%Mo stainless steel

KS D3612 YF316LC AWS A5.22 E316LT0/1-1/4 JIS Z3323 TS316L-FB0/1

Applications

WT-316L(P) is designed for MAG welding of 18%Cr-12%Ni-2%Mo stainless steels or for the welding of dissimilar joints of stainless steels.

Characteristics on Usage

- · WT-316L is a rutile type flux cored wire for flat and horizontal position welding.
- · WT-316LP is a rutile type flux cored wire for all-position welding.
- · Wire has low spatter, easy slag removal and good weld soundness.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore
 their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- · Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	130~240	25~30	10~20	
1.6	170~290	25~30	15~25	

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

품명	С	Mn	Si	Р	S	Cr	Ni	Мо	Ferrite No
WT-316L	0.030	1.42	0.62	0.020	0.011	18.56	12.39	2.3	8
WT-316LP	0.031	1.33	0.60	0.021	0.010	18.61	12.44	2.5	7

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

	Y.P MPa	T.S MPa	EL(%)	IV J (−20°C)
WT-316L	425	575	42	55
WT-316LP	422	578	42	58

Welding positions

Approved by ABS, DNV-GL, JIS, CE

WT-316H For 18%Cr-12%Ni-2%Mo stainless steel

Applications

WT-316H is designed for MAG welding of 18%Cr-12%Ni-2%Mo stainless steels or for the welding of dissimilar joints of stainless steels.

Characteristics on Usage

- · WT-316H is a rutile type flux cored wire for all-position welding.
- · Wire has low spatter, easy slag removal and good weld soundness
- The weld metal contains optimum ferrite contents in their austenitic structures. Therefore
 their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ and Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	130~240	25~30	10~20	
1.6	170~290	25~30	15~25	

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.06	1.31	0.58	0.019	0.007	18.67	12.51	2.4

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	Ⅳ J (−20°C)
452	579	40	52

WT-317L For 18%Cr-12%Ni-3%Mo stainless steel

Applications

WT-317L is designed for the welding of low carbon 18%Cr-12%Ni-2%Mo and 19%Cr-13%Ni-3%Mo stainless steels.

Characteristics on Usage

- · WT-317L is a rutile type flux cored wire for all-position welding.
- It has self-detaching slag, spray-like arc transfer, excellent weldability and increased creep resistance at elevated temperature.
- It contains higher levels of Mo for increased corrosion-resistance when compared to the WT-316L.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	130~220	24~33	10~20
1.6	170~250	24~33	15~25

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.03	1.20	0.80	0.021	0.009	18.4	12.5	3.4

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	IV J (−20°C)
460	600	34	35

Welding positions

Approved by

JIS

WT-347 is designed for the welding of 19%Cr-9%Ni-Nb stainless steels.

Characteristics on Usage

- · WT-347 is a rutile type flux cored wire for all-position welding.
- · It has low spatter generation, easy slag removal and good weld soundness.
- · Nb component improves the resistance to intergranular corrosion of the weld metal.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore
 their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	130~220	25~30	10~20
1.6	170~250	25~30	15~25

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Nb
0.027	1.00	0.65	0.021	0.006	18.5	9.5	0.4

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	Ⅳ J (−60°C)
430	590	37	50

Welding positions

Approved by

70

WT-347H is designed for the welding of 19%Cr-9%Ni-Nb stainless steels.

Characteristics on Usage

- · WT-347H is a rutile type flux cored wire for all-position welding.
- · It has low spatter generation, easy slag removal and good weld soundness.
- · Nb component improves the resistance to intergranular corrosion of the weld metal.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore
 their weldability is excellent with lower crack susceptibility.

Notes on Usage

- The shielding gas should be used 100%CO₂ and Ar+20 \sim 25%CO₂ for welding.
- · Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)
--	---

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	130~220	25~30	10~20
1.6	170~250	25~30	15~25

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Nb
0.056	1.04	0.69	0.018	0.007	18.6	9.7	0.7

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.P MPa	T.S MPa	EL(%)	IV J (−60°C)
442	579	36	52

EN ISO 17633-A:20 25 5 Cu NLP M21 2 WT-904L For 20%Cr-25%Ni-4.5%Mo-1.5%Cu stainless steel

Applications

Welding of 20%Cr-25%Ni-4.5%Mo-1.5%Cu stainless steel. EN ISO 17633-A : 20 25 5 Cu NLP M21 2

Characteristics on Usage

- WT-904L is a rutile type flux cored wire for all-position welding.
- · Attractive bead appearance, very good penetration and high productivity.

AWS A5.22 EC385T1-4

- · Excellent X-ray soundness.
- · Specifically designed for out-of-position welding.
- · Maximum productivity for completion of vertical welds.

Notes on Usage

- Use Ar+15~25% CO₂ gas.
- Gas flow rate is proper 20~25l /min.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	120~220	24~33	10~20	
1.6	150~250	24~33	15~25	

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Cu	Мо
0.02	1.6	0.43	0.02	0.006	20.6	25.2	1.36	4.8

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)	CVN−Impact Value J (−196°C)
609	38	59

WT-2209 For 22%Cr-9%Ni-2%Mo-0,15%N Duplex stainless steel

AWS A5.22 E2209T1-1/4 JIS Z3323 TS2209-FB1

Applications

WT-2209 is designed for the welding of 23%Cr-9%Ni-3%Mo duplex stainless steels and this principal area of application is chemical plant and shipbuilding as well as nuclear plant industries.

Characteristics on Usage

- · WT-2209 is a rutile type flux cored wire for all-position welding.
- · It has low spatter generation, easy slag removal and good weld soundness.
- · It is excellent in pitting corrosion resistance and stress corrosion cracking resistance.

Notes on Usage

- The shielding gas should be used 100%CO2 or Ar+20~25%CO2 for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	120~220	24~33	10~20
1.6	150~250	24~33	15~25

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо	N	Ferrite No
0.030	0.80	0.60	0.020	0.007	22.40	8.6	2.9	0.12	48

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	IV J (−20°C)
685	800	27	54

Welding positions

<u>└</u> |∠ |-- -| -| Ţ

Approved by

JIS

WT-2553 is designed for the welding of 25%Cr-9%Ni-3%Mo-Cu super duplex stainless steels and this typical application is chemical plant and shipbuilding as well as nuclear plant industries. (UNS S32520, UNS S32550, S32750, S32900, JIS 329J4L)

Characteristics on Usage

- · WT-2553 is a rutile type flux cored wire for all-position welding.
- · It has low spatter generation, easy slag removal and good weld soundness.
- · It is excellent in pitting corrosion resistance and stress corrosion cracking resistance.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	120~220	24~33	10~20	
1.6	150~250	24~33	15~25	

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Cr	Ni	Мо	Cu	Ν
0.030	0.91	0.55	25.4	9.1	3.6	1.9	0.15

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y,S MPa	T.S MPa	EL(%)	IV J (−20°C)
710	860	25	46

Welding positions

Approved by

WT-2594 For 25%Cr-9%Ni-4%Mo-Cu-N Super Duplex stainless steel

A5.22 E2594T1-1/4

Applications

WT-2594 is designed for the welding of 25%Cr-9%Ni-4%Mo-Cu super duplex stainless steels and this typical application is chemical plant and shipbuilding as well as nuclear plant industries. (UNS S32750, UNS S32760, S32900)

Characteristics on Usage

- · WT-2594 is a rutile type flux cored wire for all-position welding.
- · It has low spatter generation, easy slag removal and good weld soundness.
- · It is excellent in pitting corrosion resistance and stress corrosion cracking resistance.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	120~220	24~33	10~20	
1.6	150~250	24~33	15~25	

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

(С	Mn	Si	Cr	Ni	Мо	Cu	Ν
0.	.03	0.90	0.54	26.8	8.9	4.1	0.09	0.24

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	IV J (−20°C)
715	880	24	51

WT-2595 For Duplex Stainless Steel

Applications

WT–2595 is designed for welding super duplex stainless steel castings. (UNS J93404, ASTM A890 Gr. 5A, 6A, ASME SA351, SA 995 grades CD3MN CD3MWCuN)

Characteristics on Usage

- · This is a rutile type flux cored wire for all-position welding.
- · It has a smooth stable arc producing a weld with easy slag removal and minimal spatter.
- It is offering high tensile strength and toughness as well as an excellent resistance to stress corrosion cracking and localized corrosion in chloride containing environments.

Notes on Usage

- The shielding gas should be used 100%CO2 and Ar+20 $\sim\!25\%\text{CO2}$ for welding.
- Gas flow rate is proper 20~25ℓ/min.
- Protect the weld with a screen to prevent blowholes caused by wind where the wind velocity is 2m/sec and more.
- Keep the distance between tip & base metal at 15~25mm.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	130~220	25~30	10~20	
1.6	170~250	25~30	15~25	

Size & Recommended Current Range (DC +)

Typical Chemical Composition of All-Weld-Metal (%) (Shielding gas : CO2)

С	Si	Mn	Р	S	Cr	Ni	Мо	N
0.02	0.46	1.0	0.020	0.001	25.0	8.4	3.9	0.21

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S N/mm ²	T.S N/mm ²	EL(%)
_	854	22

WT-409Ti For 13%Cr-Ti stainless steel(Muffler)

AWS A5.22 E409T0-G JIS Z3323 TS409-MA0

Applications

WT-409Ti is a metal cored wire designed for the horizontal fillet welding of AISI 409 ferrite stainless steels.

Characteristics on Usage

- This wire has been specifically formulated for use in the welding of automotive exhaust systems and mufflers.
- It benefits from being spatter free and without slag formation when used with argon or argon oxygen mixed shielding gas.
- High speed welding can be carried out with this product on thin plate material without burning through.

Notes on Usage

- The shielding gas should be used Ar or Ar+2%O2 for welding.
- Gas flow rate is proper 20~25 l/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)	
1.2	180~340	24~33	10~20	
1.6	200~400	24~33	15~25	

Sizes Available and Recommended Currents (DC +)

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ti
0.032	0.54	0.62	0.014	0.012	11.30	0.90

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)
410	520	25

Welding positions

Approved by JIS

C A W

WT-410 For 13%Cr stainless steel(Hardfacing)

Applications

WT-410 is designed for MAG welding of martensite stainless alloys of the 13%Cr types and for surfacing of sealing faces of valves for gas, water, and steam piping system at service temperatures up to 450° C.

Characteristics on Usage

- · WT-410 is a metal cored wire for all-position welding.
- · It is suitable for the first layer of corrosion resistant weld claddings.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.
- Preheat at 150∼300°C and PWHT at 750°C.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	180~340	24~33	10~20
1.6	200~400	24~33	15~25

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.04	0.62	0.53	0.020	0.009	13.1	0.3	0.02

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : CO₂)

Y,S MPa	T.S MPa	EL(%)	PWHT
370	530	31	750℃ X 1Hr

Welding positions

Approved by

JIS

WT-410NiMo

AWS A5.22 E410NiMoT1-1/4 JIS Z3323 TS410NiMo-FB1

For 13%Cr-4%Ni-Mo stainless steel(Hardfacing)

Applications

WT-410NiMo is designed for MAG welding of soft-martensite stainless alloys of the 13%Cr-4%Ni-Mo types.

Characteristics on Usage

- · WT-410NiMo is a rutile type flux cored wire for all position welding.
- · It features very good ductility, CVN toughness and crack resistance.
- Arc stability is excellent, so spatter loss is low and slag covering is uniform with good removability.

Notes on Usage

- The shielding gas should be used 100%CO₂ or Ar+20 \sim 25%CO₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.
- Preheat at 150∼300°C and PWHT at 600°C.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	180~340	24~33	10~20
1.6	200~400	24~33	15~25

Size Available and Recommended Currents (DC +)

С	Mn	Si	Р	S	Cr	Ni	Мо	Cu
0.06	0.85	0.55	0.022	0.012	12.3	4.4	0.42	0.02

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y,S MPa	T.S MPa	EL(%)	PWHT
780	900	18	600℃ X 1Hr

Welding positions

Approved by

JIS

WT-430 is designed for MAG welding of ferrite stainless alloys of the 17%Cr-Ti types and for automotive exhaust fabricators such as front pipe, bellows, flange, etc.

Characteristics on Usage

- · WT-430 is a metal cored wire for high speed welding.
- This wire gives excellent bead appearance and provides the operator with a soft stable arc and very low spatter levels thus giving enhanced cosmetic appearance.
- It provide higher corrosion resistance, heat resistance due to high alloy designs and also suitable for surfacing of sealing faces of gas, water and steam valves.

Notes on Usage

- The shielding gas should be used Ar+2%O2 for welding.
- Gas flow rate is proper 20~25ℓ/min.

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	180~340	24~33	10~20
1.6	200~400	24~33	15~25

Size Available and Recommended Currents (DC +)

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ti
0.032	0.52	0.55	0.014	0.008	16.3	0.9

Typical Mechanical Properties of All–Weld–Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)
452	532	26

WT-430LNb For 17%Cr-Nb stainless steel(Muffler)

AWS A5.22 E430NbT0-4

Applications

WT-430LNb is designed for MAG welding of ferrite stainless alloys of the 18%Cr-Nb type and suitable for welding parts of the muffler system, such as AISI 430 steel.

Characteristics on Usage

- · WT-430LNb is a metal cored wire for high speed welding.
- This wire gives excellent bead appearance and provides the operator with a soft stable arc and very low spatter levels thus giving enhanced cosmetic appearance.
- · It provide higher corrosion resistance, heat resistance due to high alloy designs.

Notes on Usage

- · The shielding gas should be used Ar+2%O2 for welding.
- Gas flow rate is proper 20~25ℓ/min.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Voltage(V)	Electrode extension(mm)
1.2	150~280	24~33	10~20
1.6	200~350	24~33	15~25

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Nb
0.031	0.68	0.49	0.011	0.009	17.28	0.48

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)
412	550	27

WT-436 For 17%Cr stainless steel(Muffler)

Applications

WT-436 is a metal cored wire for horizontal, fillet and flat position welding of 409,430 and 436 type stainless steels as found in ferrite stainless steels automotive mufflers.

Characteristics on Usage

- · WT-436 is a metal cored wire for high speed welding.
- This wire gives excellent bead appearance and provides the operator with a soft stable arc and very low spatter levels thus giving enhanced cosmetic appearance.
- · It is also suitable for surfacing of sealing faces of gas, water and steam valves.

Notes on Usage

- The shielding gas should be used Ar+2%O₂ for welding.
- Gas flow rate is proper 20~25ℓ/min.

Sizes Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Electrode extension(mm)
1.2	200~270	10~20
1.6	220~350	15~25

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Мо	Ti
0.022	0.41	0.40	0.009	0.012	17.0	1.09	0.60

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y,S MPa	T.S MPa	EL(%)
395	487	23

Α

W

WT-439 For 17%Cr-Ti stainless steel(Muffler)

Applications

WT-439 is a metal cored wire designed for flat and horizontal fillet welding of AlSI 439 ferrite stainless steels.

Characteristics on Usage

- · WT-439 is a metal cored wire for high speed welding.
- This wire gives excellent bead appearance and provides the operator with a soft stable arc and very low spatter levels thus giving enhanced cosmetic appearance.
- · It has the high tensile strength at the high temperature atmosphere.

Notes on Usage

- The shielding gas should be used Ar+2%O2 for welding.
- Gas flow rate is proper 20~25ℓ/min.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Electrode extension(mm)	
1.2	200~270	10~20	
1.6	220~350	15~25	

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ti
0.034	0.46	0.32	0.012	0.008	17.50	0.30

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T,S MPa	EL(%)
480	510	22

WT-625 is designed for welding of Inconel 600 + 625 and Nickel alloys, 9% Nickel steels. (LNG storage tank manufacture, desulfurization, Heat exchanger, Building of chemical carrier)

Characteristics

- It can be used for surfacing of 9% Ni steels or dissimilar welding of Inconel to stainless steels.
- The weld metal has high strength at room and elevated temperatures and has exceptional corrosion resistance.

Notes on Usage

- Use 100%CO2 or Ar+20~25%CO2 gas.
- Gas flow rate is proper 20~25ℓ/min.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Electrode extension(mm)
1.2	200~270	10~20
1.6	220~350	15~25

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Мо	Nb+Ta	Fe
0.03	0.34	0.40	0.003	0.005	21.8	Rem	8.52	3.4	0.7

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)	CVN–Impact Value J (−196°C)	
758	35	65	

Pumps, valves, pipework and vessels for use in aggressive environments in chemical process plants, also in equipment for flue gas desulphurization and critical equipment in offshore oil and gas production.

Characteristics

- It can be used for surfacing steels and dissimilar welding of nickel alloys, steels and stainless steels.
- · The weld metal has excellent resistance on pitting and crevice corrosion.

Notes on Usage

- Use Ar+20~25% CO₂ gas.
- Gas flow rate is proper 20~25ℓ/min.

Size Available and Recommended	Currents	(DC +)
--------------------------------	----------	--------

Dia(mmØ)	Current(A)	Electrode extension(mm)		
1.2	200~270	10~20		
1.6	220~350	15~25		

Typical Chemical Composition of All–Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Мо	W	Fe
0.02	0.58	0.18	0.008	0.006	14 <u>.</u> 8	Rem	16.9	3.7	5.6

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)	CVN–Impact Value J (−196°C)
760	38	62

WT-82 INCONEL 600, 601, 690 Incoloy 800, 800HT

Applications

LNG and LPG storage plant, boilers of thermal power station.

Characteristics

- · It can be used for dissimilar welding of Inconel 600 with steels or stainless steels.
- $\boldsymbol{\cdot}$ The weld metal has high strength and good corrosion resistance at elevated temperatures.

Notes on Usage

- · Use 100%CO₂ or Ar+20~25% CO₂ gas.
- Gas flow rate is proper 20~25ℓ/min.

Size Available and Recommended Currents (DC +)

Dia(mmØ)	Current(A)	Electrode extension(mm)
1.2	200~270	10~20
1.6	220~350	15~25

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Nb+Ta	Fe
0.04	3.3	0.23	0.01	0.006	21.2	Rem	2.3	1.5

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)	CVN−lmpact Value J (−196°C)
655	43	62

LNG and LPG storage plant, boilers of thermal power station.

Characteristics

- It can be used for dissimilar welding between nickel-chromium-iron alloys to mild steels or stainless steels.
- It is similar to 182 but with lower Mn and Mo addition.
 Mo and Nb are added to give high resistance to hot cracking and tolerance to dilution.

Notes on Usage

- Use Ar+20~25% CO2 gas.
- The optimum flow of CO2 for shielding is 20 ${\sim}25 \ell/min.$

Sizes Available and Recommended Currents (DC +)

Dia(m	mØ)	1.2
Current(A)	F & HF	150~220A
Curreni(A)	V–up & OH	120~170A

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Nb+Ta	Fe	Мо
0.02	2.4	0.39	0.005	0.002	15.2	Rem	1.8	9.2	0.9

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)
642	40

WT-182 INCONEL 600, 601 Incoloy 800, 800HT

Applications

LNG and LPG storage plant, boilers of thermal power station.

Characteristics

- It can be used for dissimilar welding and cladding applications of nickel-chromium-iron alloys.
- · The weld metal has high strength and good corrosion resistance at elevated temperatures.

Notes on Usage

- Use Ar+20~25% CO2 gas.
- The optimum flow of CO2 for shielding is 20 ${\sim}25\ell/\text{min}.$

Sizes Available and Recommended Currents (DC +)

Dia(m	mØ)	1.2
Current(A)	F & HF	150~220A
	V–up & OH	120~170A

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Nb+Ta	Fe
0.03	6.3	0.28	0.005	0.007	16.4	Rem	2.2	7.5

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)
650	36

WT-NiCu7

AWS A5.14M ENiCu-7

Applications

LNG and LPG storage plant, boilers of thermal power station.

Characteristics

- It can be used for dissimilar welding and cladding applications of nickel-chromium-iron alloys.
- · The weld metal has high strength and good corrosion resistance at elevated temperatures.

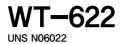
Notes on Usage

- Use Ar+20~25% CO2 gas.
- The optimum flow of CO2 for shielding is 20 ${\sim}25\ell/\text{min}.$

Sizes Available and Recommended Currents (DC +)

Position	Dia	Current(A)	Voltage(V)	
Flat	1,2(,045)	180~230	26~30	
Horizontal Fillet	1.2(.043)	180~230	26~30	

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)


С	Mn	Si	Ni	Cu	Ti
0.06	3.0	0.30	65.0	Rem	1.8

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)		
525	37		

AWS A5.34 ENiCrMo10T1-4

Applications

LNA nickel based alloy with chromium, molybdenum, and tungsten as the principal alloying elements.

Characteristics

- It provides a tough Nb-free weld metal for dissimilar welds in superaustenitic and superduplex stainless steel or combinations of these with Ni base alloys.
- Excellent corrosion resistance in oxidizing as well as reducing media in a wide variety of process environments.
- · Outstanding resistance to stress corrosion cracking, pitting and crevice corrosion.

Notes on Usage

- Use Ar+20~25% CO2 gas.
- The optimum flow of CO2 for shielding is $20 \sim 25 \ell$ /min.

Sizes Available and Recommended Currents (DC +)

Dia(m	ımØ)	1.2
Current(A)	F & HF	150~220A
Current(A)	V–up & OH	120~170A

Typical Chemical Composition of All–Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Мо	W	Мо
0.02	0.38	0.20	0.006	0.005	21.3	Rem	13.7	3.2	4.9

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)		
725	39		

AWS A5.14M ENiFeCr-1

Applications

Used for welding the nickel-iron-chromium- molybdenum-copper alloy (ASTM B 423 having UNS number N08825)

Characteristics

- It designed to match the nickel base alloy commonly known as 825 with corrosion resistance to organic acids and hot sulphuric acid.
- · Can be used to overlay cladding where similar chemical composition is required.

Notes on Usage

- Use Ar+20~25% CO2 gas.
- The optimum flow of CO₂ for shielding is $20 \sim 25 \ell$ /min.

Sizes Available and Recommended Currents (DC +)

Dia(m	mØ)	1.2
Current(A)	F & HF	150~220A
Current(A)	V–up & OH	120~170A

Typical Chemical Composition of All–Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Cr	Ni	Мо	Cu	Ti	Fe
0.01	0.01	0.20	0.003	0.002	22.2	Rem	3.1	2.0	0.8	27

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)		
485	38		

Welding positions

A W

WT-45Ni

Cast Iron , Cast Steel

Applications

The weld deposit contains approximately 45% Nickel. Machining is possible. Used for joining and repairing nearly all types of cast iron.

Characteristics

- · It designed joining and repairing nearly all types of cast iron.
- · It has an extremely low of thermal expansion rate.
- The physical property of this alloy is suitable for cast iron parts and all applications where tension of shrinkage should be avoided.

Notes on Usage

- Use Ar+20~25% CO₂ gas.
- The optimum flow of CO2 for shielding is $20 \sim 25 \ell$ /min.

Sizes Available and Recommended Currents (DC +)

Position	Dia	Current(A)	Voltage(V)	
Flat	Flat 180~230		28~32	
Horizontal Fillet	1.2(.043)	180~230	28~32	

Typical Chemical Composition of All-Weld Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S	Ni	Fe
1.04	0.22	0.70	0.01	0.005	45.0	Rem

Typical Mechanical Properties of All-Weld Metal (Shielding gas : MIX)

T.S (MPa)	EL (%)		
471	12		

FOR HARDFACING

	Hardness	Ţ	ypical Cl	hemical	Compos	ition of A	All-Weld	Metal (v	vt%)
	weld metal (HV)	С	Si	Mn	Р	S	Cr	Мо	W
WT-250H	255	0.07	0.50	1.58	0.018	0.011	1.30	0.002	
Characteristics	s on Usage		 It is highly recommendable to use on wear plate and weld metal's hardness should be over Hv 250. 						
WT-350H	360	0.12	0.45	1.36	0.015	0.011	1.30	0.21	
Characteristics on Usage - It is highly recommendable to use on wear plate and weld ardness should be over Hv 350.				d metal's					
WT-450H	452	0.12	0.45	1.56	0.012	0.010	3.10	0.50	
Characteristics	 It is highly recommendable to use on wear plate and weld metal's hardness should be over Hv 450. 								
WT-600H	605	0.34	2.80	0.50	0.013	0.008	6.50	0.51	
Characteristics	s on Usage		nighly rec				ar plate	and weld	metal's
WT-700H	710	0.40	3.20	0.60	0.012	0.010	7.00		0.80
Characteristics	s on Usage		nighly rec				ar plate	and weld	metal's
WT-800H	804	0.43	3.40	0.55	0.013	0.011	7.50		1.00
Characteristics	s on Usage	– It is h hardı	nighly rec ness sho	ommend uld be ov	able to u er Hv 800	se on we)	ar plate	and weld	metal's
WT-900B	900	0.5	0.5	0.5	0.03	0.02	11		B:6.3
Characteristics	s on Usage	on Usage - Open arc cored wire. - Extremely severe abrasive wear and moderate impact.							
WT-H60C-0	720	5.0	1.4	1.5	0.03	0.01	30		Fe:Bal
Characteristics	s on Usage		n arc core mely sev		sive wea	r and mo	derate ir	npact.	

Notes on Usage

100% CO2 (15 $\sim\!25\ell$ /min) DCEP(DC+)

SOLID WIRE

Mild steel & 490MPa high tensile steels WM-70A WM-70

WM-70G

WM-80

WM-70A For mild steel and 490MPa tensile strength steel

Applications

Butt and fillet welding of vehicles, buildings, ships, machinery, etc.

Characteristics on Usage

- WM-70A is a solid wire designed for all position welding and high speed welding of steel sheets can be performed easily by short-circuiting welding.
- · Arc is stable and spatter loss is low.

Notes on Usage

- Shielding gas should be used 100%CO₂.
- · Use wind screen against wind.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	0.9	1.2	1.6
F, HF	٨٣٥	50~220A	100~350A	200~400A
V-up	Amp	50~140A	80~160A	120~250A

Typical Chemical Composition of All–Weld–Metal (wt%) (Shielding gas : CO₂)

С	Mn	Si	Р	S
0.07	1.15	0.65	0.015	0.010

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO₂)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
461	558	29	82

WM-70 For mild steel and 490MPa tensile strength steel

Applications

Butt and fillet welding of steel structures such as vehicles, machinery and bridges.

Characteristics on Usage

- · WM-70 is a solid wire designed for all position welding by short-circuiting type transfer.
- As the deposition efficiency is high and penetration is deep, highly efficient welding can be performed.

Notes on Usage

- · Shielding gas should be used 100%CO2.
- · Use wind screen against wind.
- . Keep distance between tip and base metal $6{\sim}15\text{mm}$ for less than 250A, and 15{\sim}25\text{mm} for more than 250A of welding current.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	0.9	1.2	1.6
F, HF	Amp	50~220A	100~350A	200~400A
V-up		50~140A	80~160A	120~250A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S
0.07	1.43	0.77	0.015	0.018

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
445	542	28	74

WM-70G For mild steel and 490MPa tensile strength steel

Applications

Butt and fillet welding of ships, steel structures and machinery.

Characteristics on Usage

- \cdot WM–70G is a solid wire for flat and fillet welding and is to be used with a high current welding with Ar+CO_2 mixed gas.
- · As this wire contains special elements, its weldability and impact values are excellent.

Notes on Usage

- · Shielding gas should be used 100%CO2 or Ar+20~25%CO2.
- · Use wind screen against wind.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1,2	1.6
F, HF	Amp	200~350A	300~500A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : MIX)

С	Mn	Si	Р	S
0.05	1.52	0.79	0.013	0.018

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : MIX)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
455	568	28	85

WM-80 For mild steel and 590MPa tensile strength steel

Applications

Butt and fillet welding of steel structures and using 550MPa or 600MPa tensile steels such as construction machinery, buildings and pressure vessels.

Characteristics on Usage

- WM-80 is a solid wire for flat and horizontal fillet welding position. As the deposition rate is very high, highly efficient welding can be performed.
- · As the wire contains special elements, its bead appearance is excellent.

Notes on Usage

- Shielding gas should be used 100%CO₂ or Ar+20~25%CO₂.
- · Use wind screen against wind.

Sizes Available and Recommended Currents (DC +)

Position	Dia(mmØ)	1.2	1.6
F, HF	Amp	200~350A	250~400A

Typical Chemical Composition of All-Weld-Metal (wt%) (Shielding gas : CO2)

С	Mn	Si	Р	S	Мо	Ti
0.06	1.82	0.80	0.018	0.008	0.025	0.015

Typical Mechanical Properties of All-Weld-Metal (Shielding gas : CO2)

Y.S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-20°C)
575	660	25	110

www.hkweldtek.com

MIG WIRE

Stainless steels Ni base alloy

Characteristics on Usage

MIG welding of 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors,

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.04	1.60	0.46	19.88	9.62

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T,S MPa	EL(%)
442	611	40

KS D7026 Y308L AWS A5.9 ER308L JIS Z3321 Y308L

Characteristics on Usage

MIG welding of low carbon 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.72	0.48	19 <u>.</u> 68	9.66

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T,S MPa	EL(%)
396	584	43

WMS-308LSi

For Low carbon 18%Cr-8%Ni Stainless steel

Characteristics on Usage

MIG welding of low carbon 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors,

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.66	0.85	19.64	9.98

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T,S MPa	EL(%)
374	580	42

WMS-309 For 22%Cr-12%Ni Stainless steel

KS D7026 Y309 AWS A5.9 ER309 JIS Z3321 Y309

Characteristics on Usage

MIG welding of 22%Cr-12%Ni steel, heat resistant cast steel clad side of 18%Cr-8%Ni clad steel and stainless steel to Cr-Mo steel or carbon steel.

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Cr	Ni
0.05	1.55	0.44	23.22	13.28

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
422	612	41

Characteristics on Usage

MIG welding of 22%Cr-12%Ni steel, heat resistant cast steel clad side of 18%Cr-8%Ni clad steel and stainless steel to Cr-Mo steel or carbon steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.64	0.45	23.10	13.78

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
428	587	42

KS D7026 Y310 AWS A5.9 ER310 JIS Z3321 Y310

Characteristics on Usage

MIG welding of 25%Cr–20%Ni stainless steel, welding on the clad side of stainless clad steel. Welding of dissimilar metals,

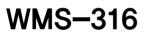
Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.60	0.41	26.43	20.94

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
380	605	40

M


Mig Welding of 29%Cr-9%Ni stainless steel and dissimilar metals.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.11	1.84	0.42	30.54	8.78

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
434	728	30

KS D7026 Y316 AWS A5.9 ER316 JIS Z3321 Y316

For 18%Cr-12%Ni-Mo Stainless steel

Characteristics on Usage

MIG welding of 18%Cr-12%Ni-2%Mo stainless steel for chemical industries and nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо	Nb+Ta
0.04	1.62	0.44	19.42	Rem	2.32	3.8

Y,S MPa	T.S MPa	EL(%)
418	584	38

MIG welding of low carbon 18%Cr-12%Ni-2%Mo stainless steel for chemical industries and nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.02	1.61	0.52	18.94	11.81	2.28

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
432	576	39

Inconel 625, Incoloy 825

KS D7045 YNiCrMo-3 AWS A5.14 ERNiCrMo-3 JIS Z3334 YNiCrMo-3

Characteristics on Usage

WMS-625 is designed for welding of Inconel 600 + 625 and Nickel alloys, 9% Nickel steels. (LNG storage tank manufacture, desulfurization, Heat exchanger, Building of chemical carrier)

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо	Nb+Ta
0.01	0.03	0.08	22.24	Rem	8.67	3.8

T,S MPa	EL(%)
769	40

Pumps, valves, pipework and vessels for use in aggressive environments in chemical process plants, also in equipment for flue gas desulphurization and critical equipment in offshore oil and gas production.

Typical Chemical Composition of All–Weld–Metal (wt%)

С	Mn	Si	Cr	Ni	Мо	W
0.01	0.50	0.04	15.84	Rem	16.02	3.67

Typical Mechanical Properties of All-Weld-Metal

T,S MPa	EL(%)
752	33

KS D7045 YNiCr-3 AWS A5.14 ERNiCr-3 JIS Z3334 YNiCr-3

Characteristics on Usage

LNG and LPG storage plant, boilers of thermal power station.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Fe	Nb+Ta
0.02	3.05	0.10	20.29	Rem	1.07	2.42

T,S MPa	EL(%)
652	38

Used for welding desalination plant, evaporators, etc in salt and sea water processing system.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cu	Ni	Ti
0.01	0.79	0.08	Rem	30.74	0.32

Typical Mechanical Properties of All-Weld-Metal

T,S MPa	EL(%)
344	30

KS D7044 YCuNi-1 JIS Z3341 YCuNi-1

UNS 69200, Cupronickei

Characteristics on Usage

Used for welding of offshore oil/gas, and petrochemical process industries.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cu	Ni	Ti	Fe
0.03	0.85	0.03	Rem	10.48	0.32	0.30

T,S MPa	EL(%)
374	38

www.hkweldtek.com

TIG WIRE

Mild steel & 490MPa high tensile steels Stainless steels Ni base alloy

Butt and fillet welding of carbon steel for pressure vessels, tubes for nuclear reactors, ships, penstock and aluminum-killed steel for low temperature service.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S
0.07	1.52	0.84	0.012	0.014

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)	CVN-Impact Value J (-30°C)
488	582	30	118

WTS-506

For mild steels and 490MPa tensile strength steel

AWS A5.18 ER70S-6 JIS Z3316 YGT50

KS D7140 YGT50

Characteristics on Usage

Butt and fillet welding of carbon steel for pressure vessels, tubes for nuclear reactors, ships, penstock and aluminum-killed steel for low temperature service.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S
0.07	1.54	0.81	0.012	0.015

Y,S MPa	T.S MPa	EL(%)	CVN–Impact Value J (−30°C)
492	586	31	104

Used for welding of offshore oil/gas, chemical and petrochemical process industries, e.g. pipework systems, flowlines, risers, manifolds etc.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.01	1.67	0.40	22.68	8.72	3.09

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T,S MPa	EL(%)
600	815	36

W٦	۲S-	-308	
For 189	6Cr-8%N	vi Stainless ste	eel

KS D7026 Y308 AWS A5.9 ER308 JIS Z3321 Y308

Characteristics on Usage

TIG welding of 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.04	1.84	0.42	19.80	9.72

Y,S MPa	T,S MPa	EL(%)
402	578	42

TIG welding of low carbon 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors,

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.05	2.04	0.44	19.80	9.78

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
368	587	41

W٦	rs-	-3	08L		
For Low	v carbon	18%	Cr-8%Ni	Stainless	steel

KS D7026 Y308L AWS A5.9 ER308L JIS Z3321 Y308L

Characteristics on Usage

TIG welding of low carbon 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors,

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.02	1.88	0.38	19.74	9.78

Y,S MPa	T,S MPa	EL(%)
394	581	43

WTS-308LSi

For Low carbon 18%Cr-8%Ni Stainless steel

Characteristics on Usage

TIG welding of low carbon 18%Cr-8%Ni steel for chemical industries such as oil, medical, fertilizer and textile industries and for nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.68	0.85	19.64	9.98

Typical Mechanical Properties of All-Weld-Metal

Y.S MPa	T.S MPa	EL(%)
374	580	42

W٦	۲S-	-309	
For 229	6Cr-129	%Ni Stainless ste	el

KS D7026 Y309 AWS A5.9 ER309 JIS Z3321 Y309

Characteristics on Usage

TIG welding of 22%Cr-12%Ni steel and a variety welding stainless with mild steel. Clad steel side of 18%Cr-8%Ni clad steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.05	1.55	0.42	23.14	13.09

Y,S MPa	T,S MPa	EL(%)
422	608	40

TIG welding of low carbon 22%Cr-12%Ni steel and a variety welding stainless with mild steel. Clad steel side of 18%Cr-8%Ni clad steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.64	0.46	23.10	13.78

Typical Mechanical Properties of All-Weld-Metal

Y.S MPa	T.S MPa	EL(%)
410	590	42

WTS-309LSi

AWS A5.9 ER309LSi

For Low carbon 22%Cr-12%Ni Stainless steel

Characteristics on Usage

TIG welding of low carbon 22%Cr-12%Ni steel and a variety welding stainless with mild steel. Clad steel side of 18%Cr-8%Ni clad steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	1.84	0.90	23.10	13.64

Y,S MPa	T.S MPpa	EL(%)
412	545	42

TIG welding of 25%Cr-20%Ni steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.10	1.60	0.41	26.73	20.84

Typical Mechanical Properties of All-Weld-Metal

Y.S MPa	T.S MPa	EL(%)
375	576	42

W٦	۲S-	-31	12
For 29%	6Cr-9%	Ni Stair	nless steel

KS D7026 Y312 AWS A5.9 ER312 JIS Z3321 Y312

Characteristics on Usage

TIG Welding of 29%Cr-9%Ni stainless steel and dissimilar metals.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.11	1.82	0.41	30.63	8.94

Y,S MPa	T,S MPa	EL(%)
512	786	26

TIG welding of 18%Cr-12%Ni-2%Mo stainless steel for chemical industries and nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.04	1.60	0.44	19.23	12.12	2.26

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
418	574	40

KS D7026 Y316L AWS A5.9 ER316L JIS Z3321 Y316L

Characteristics on Usage

TIG welding of low carbon 18%Cr-12%Ni-2%Mo stainless steel for chemical industries and nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.02	1.68	0.42	18.64	11.82	2.24

Y,S MPa	T.S MPa	EL(%)	
426	566	40	

WTS-316LSi

For Low carbon 18%Cr-12%Ni-Mo Stainless steel

Characteristics on Usage

TIG welding of low carbon 18%Cr-12%Ni-2%Mo stainless steel for chemical industries and nuclear reactors,

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.01	1.55	0.88	18.62	11.64	2.51

Typical Mechanical Properties of All-Weld-Metal

Y.S MPa	T.S MPa	EL(%)
422	569	36

WTS-317L	KS D7026 Y317L
WISTSI/L	AWS A5.9 ER317L
For Low carbon 20%Cr-14%Ni-Mo Stainless steel	JIS Z3321 Y317L

Characteristics on Usage

TIG welding of low carbon 20%Cr-14%Ni-3.5%Mo stainless steel for chemical industries and nuclear reactors.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо
0.01	1.64	0.38	19.06	13.54	3.10

Y,S MPa	T.S MPa	EL(%)
396	564	35

TIG Welding of 18%Cr-8%Ni-Nb(SUS 347) and 18%Cr-8%Ni-Ti(SUS321) stainless steel.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Nb+Ta
0.05	1.55	0.41	19.04	9.12	0.68

Typical Mechanical Properties of All-Weld-Metal

Y.S MPa	T.S MPa	EL(%)
404	628	40

KS D7026 Y410 AWS A5.9 ER410 JIS Z3321 Y410

Characteristics on Usage

TIG Welding of 13%Cr stainless steel (STS 403, STS 410)

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	0.36	0.32	12.61	0.20

Y,S MPa	T.S MPa	EL(%)
332	538	37

TIG Welding of 12%Cr martensite stainless steels. (AISI 420)

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.33	0.42	0.38	12.56	0.15

Typical Mechanical Properties of All-Weld-Metal

Y,S MPa	T.S MPa	EL(%)
334	514	21

W.	TS-	-430
For 16	%Cr Stai	nless steel

KS D7026 Y430 AWS A5.9 ER430 JIS Z3321 Y430

Characteristics on Usage

TIG Welding of 16%Cr ferrite stainless steel (AISI 409, 430Ti, 431, ASTM A176)

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni
0.01	0.39	0.32	16.64	0.24

Y.S MPa	T.S MPa	EL(%)	PWHT
324	536	37	760℃ X 2Hr

WTS-625 is designed for welding of Inconel 600 + 625 and Nickel alloys, 9% Nickel steels, (LNG storage tank manufacture, desulfurization, Heat exchanger, Building of chemical carrier)

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо	Nb+Ta
0.01	0.03	0.08	22.24	Rem	8.67	3.42

Typical Mechanical Properties of All-Weld-Metal

T,S MPa	EL(%)
778	41

KS D7045 YNiCrMo-4 AWS A5.14 ERNiCrMo-4 JIS Z3334 YNiCrMo-4

Characteristics on Usage

Pumps, valves, pipework and vessels for use in aggressive environments in chemical process plants, also in equipment for flue gas desulphurization and critical equipment in offshore oil and gas production.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Мо	W
0.01	0.50	0.04	15.84	Rem	16.02	3.67

T,S MPa	EL(%)
746	33

LNG and LPG storage plant, boilers of thermal power station.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cr	Ni	Fe	Nb+Ta
0.02	3.08	0.11	20.32	Rem	1.05	2.48

Typical Mechanical Properties of All-Weld-Metal

T,S MPa	EL(%)
649	39

KS D7044 YCuNi-3 AWS A5.7 ERCuNi JIS Z3341 YCuNi-3

Characteristics on Usage

Used for welding desalination plant, evaporators, etc in salt and sea water processing system.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cu	Ni	Ti
0.01	0.80	0.08	Rem	30.70	0.30

T,S MPa	EL(%)
348	30

Used for welding of offshore oil/gas, and petrochemical process industries.

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Cu	Ni	Ti	Fe
0.02	0.85	0.04	Rem	10.46	0.31	0.30

T,S MPa	EL(%)
370	37

SMAW

Mild steel & 490MPa high tensile steels For Low Alloy Heat Resistant steels For Low Temperature Service steels For Cast Iron Stainless steels Ni base alloy

Welding of such parts, where the highest reliability is required, such as strength members of ship hulls, high pressure vessels and buildings.

Characteristics

- W 4301 is ilmenite type covered electrode which is designed for better weldability in particular.
- Welding of such parts, where the highest reliability is required, such as strength members of ship hulls, high pressure vessels and buildings.
- · Its crack resistibility and X-ray soundness are excellent.
- The most excellent mechanical properties and also suitable for welding of structural steels of heavy section about 25mm thickness.

Notes on Usage

- Pay attention not to exceed the range of proper currents in case of welding structures which require weld metal of high X-ray soundness.
- Dry the electrodes at 70~100°C for 30~60 minutes before use. Excessive moisture absorption lowers usability and may result in some porosities.
- · Excessive drying before use causes less penetration and overheating of the electrode.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia. (mm)		2,0	2,6	3,2	4.0	5.0	6.0
Length (mm)		300	350	350	400	400	450
Current (A)	F	35~55	50~85	80~130	120~180	170~250	240~310
	V–up & OH	30~50	45~70	60~110	110~150	130~200	_

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.08	0.42	0.13	0.015	0.014

Typical Mechanical Properties of All-Weld-Metal

Y.S (MPa)	Y.S (MPa) T.S (MPa)		CVN–Impact Value J (–20°C)
400	470	32	100

6.0

 $250 \sim 300$

Applications

Welding of ship hulls, vehicles, machinery, buildings and bridges,

Characteristics

- W 4303 is an iron powder lime rutile type electrode which provides highly efficient welding by high deposition rate and good re-arcing property.
- · This is characterized by exceptionallywelding speed increase, easy slag removal even from narrow grooves and outstandingbead appearance.

Notes on Usage

- · Pay attention not to exceed the range of proper currents. Welding with excessivecurrent not only lower X-ray soundness, but also causes increase of spatter, undercutand insufficient slag covering.
- Drv the electrodes at 70~100°C for 30~60 minutes before use. Excessive moisture absorption lowers usability and may result in some porosities.

400

 $180 \sim 240$

150~200

6			Dia	. (mm)	2.6	3.2	4.0
		Leng	Length (mm)		350	400	
A	Current	F	55~90	90~130	130~180		
v	(A)	V–up & OH	50~80	80~120	110~170		

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.08	0.38	0.16	0.013	0.011

Typical Mechanical Properties of All-Weld-Metal

Y,S (MPa)	T.S (MPa)	EL (%)	CVN-Impact Value J (-20°c)
413	452	32	118

W 6011 is commonly used as an all purpose electrode for automobile body shops and mild steel farm equipment. Other uses would include shipbuilding, bridges, boilers, barges, railroad cars, pipes, truck frames, pressure vessels, storage tanks and galvanized steel.

Characteristics

- As the welding in poor groove fit up and vertical-dawn welding can be performed easily, it is used in all position welding of pipes.
- W 6011 high cellulose coated electrodes provide excellent arc stability, increased ductility, high deposition efficiency and low spatter.
- · It is especially suited for welding where poor groove fit-up and rusty or oily steel is present.

Notes on Usage

• Dry the electrodes at 70~80°C for 30~60 minutes before use.

Dia. (mm)		2.6	3.2	4.0	5.0	6.0
Length (mm)		350	350	400	400	450
Current	F	55~90	90~130	130~180	180~240	250~300
(A)	V–up & OH	50~80	80~120	110~170	150~200	-

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.09	0.56	0.27	0.019	0.008

Typical Mechanical Properties of All-Weld-Metal

Y.S (MPa)	T.S (MPa)	EL (%)	CVN-Impact Value J (-30°C)
418	510	30	80

Welding positions

S M A W

Welding of shells of railway vehicles, cars and other steel sheet structures and general light structural steels.

Characteristics

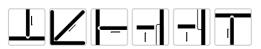
- · W 6013 is a high rutile type electrode which provides good usability in all positions.
- · The arc is stable with little spatter and the lustrous bead can be obtained.
- · W 6013 is suitable for welding steel sheets and light structures because of shallow penetration.

Notes on Usage

- Pay attention not to exceed the range of proper currents. Welding with excessive current not only lowers X-ray soundness, but also causes increase of spatter, under-cut.
- Dry the electrodes at 70~100°C for 30~60 minutes before use. Excessive moisture absorption lowers usability and may result in some porosities.

Dia. (mm)		2.0	2,6	3,2	4.0	5.0	6.0
Length (mm)		300	350	350	400	400	450
Current (A)	F	30~65	45~100	60~130	105~170	150~230	200~280
	V–up & OH	30~65	45~90	60~110	100~150	125~200	-

Sizes Available and Recommended Currents (AC or DC \pm)


Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.06	0.43	0.29	0.018	0.012

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	
430	480	28	

Welding positions

Approved by

KS

Welding of 50kgf/mm 2 class high tensile strength steel of ships, bridges structure and pressure vessels.

Characteristics

- · Excellent crack resistance even in the welding of difficult to weld steels.
- · W 7016 is a low hydrogen type electrode with excellent crack resistance.

Notes on Usage

- · Remove dirts such as oil and scale from the groove.
- \cdot Dry the electrodes at 300~350 °C for 30~60 minutes before use.
- · Keep the arc as short as possible.
- Take the backstep method or strike the arc on a small steel plate prepared to prevent blowholes at the arc starting.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.6	3.2	4.0	5.0	6.0
Leng	gth (mm)	350	350	400	400	450
Current	F	55~85	90~130	130~180	180~240	250~310
(A)	V–up & OH	50~80	80~120	110~170	150~200	_

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.08	1.05	0.62	0.014	0.010

Typical Mechanical Properties of All-Weld-Metal

Y.S (MPa)	T.S (MPa)	EL (%)	CVN-Impact Value J (-30°C)
490	560	31	150

Welding of 50kgf/mm² class high tensile strength steel of ships, bridges and structure.

Characteristics

- · W 7018 is iron powder low hydrogen type electrode for all-position welding.
- · Its usability is the best with direct current application as well as alternating current application.

Notes on Usage

- · Remove dirts such as oil and scale from the groove.
- Dry the electrodes at 350~400°C(662~752°F) for 60 minutes before use.
- · Keep the arc as short as possible
- Take the backstep method or strike the arc on a small steel plate prepared to prevent blowholes at the arc starting.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2,6	3.2	4.0	5.0	6.0
Leng	ıth (mm)	350	350	400	400	450
Current	F	60~100	90~130	130~180	180~240	250~300
(A)	V-up & OH	50~80	80~120	110~170	150~200	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.07	1.10	0.55	0.017	0.011

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	CVN-Impact Value J (-30°c)
505	575	30	125

Tack welding of 490MPaclass high tensile strength steels in ships, bridges, buildings.

Characteristics on Usage

- · It is a low hydrogen type electrode, makes easier re-arcing.
- · Then it gives an excellent tack welding performance.
- When a proper welding current is set, it makes welding possible includingvertical down welding.

Notes on Usage

- Dry the electrodes at 300~350°C for 30~60 minutes before use.
- Adopt backstep method or strike the arc on a small steel plate prepared for this
 particularpurpose to prevent blowholes at the arc starting.
- · Keep the arc as short as possible

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.6	3.2	4.0	5.0	6.0
Leng	ıth (mm)	350	350	400	400	450
Current	F	55~90	90~130	130~180	180~240	250~300
(A)	V–up & OH	50~80	80~120	110~170	150~200	_

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
0.08	0.72	0.33	0.011	0.009

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	CVN–Impact Value J (–30°C)
462	540	32	110

W 8016, B2

Applications

W 8016.B2 can be used for welding of 1.25%Cr-0.5%Mo steel for super-heat tubes, steam pipes and heaters of boilers for thermo-electric power plant and equipment of oil refining industries.

Characteristics on Usage

- · W 8016.B2 is a low hydrogen type electrode and is usable in all positions.
- It is suitable for welding 1.25%Cr-0.5%Mo steel pipes and high carbon Cr-Mo steel.

Notes on Usage

- Dry the electrodes at 350~400°C(662~752°F) for 60 minutes before use.
- · Preheat at 150~300°C and postheat at 670~730°C.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.6	3.2	4.0	5.0	6.0
Leng	ıth (mm)	350	350	400	400	450
Current	F	55~90	90~130	130~180	180~240	250~300
(A)	V–up & OH	50~80	80~120	110~170	-	_

Typical Chemical Composition of All-Weld Metal (%)

С	Mn	Si	Р	S	Cr	Мо
0.07	0.71	0.51	0.012	0.001	1.24	0.52

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	PHWT
541	634	28	690℃ X 1hr S · R

W 9016,B3

KS D7022 DT2416 AWS A5.5 E9016-B3 JIS Z3223 DT2416

Applications

W 9016,B3 can be used for welding of 2,25%Cr-1%Mo steel used for super heat tubes and steam pipes of boilers for electric power plant and marine use, equipment for oil refining industries and high temperature synthetic chemical industries.

Characteristics

- · W 9016.B3 is a low hydrogen type electrode suitable for all position welding.
- · It provides the weld metal of 2.25%Cr-1%Mo.

Notes on Usage

- \cdot Dry the electrodes at 350~400 °C for about one hour before use.
- Preheat at 200~350°C and postheat at 680~730°C.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.6	3.2	4.0	5.0	6.0
Leng	ıth (mm)	350	350	400	400	450
Current	F	55~90	90~130	130~180	180~240	250~300
(A)	V–up & OH	50~80	80~120	110~170	-	-

Typical Chemical Composition of All-Weld Metal (%)

С	Mn	Si	Р	S	Cr	Мо
0.07	0.80	0.55	0.020	0.010	2.28	1.05

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	PHWT
564	686	24	690℃ X 1hr S · R

W 7016N For 490MPa Low temperature steel

Applications

Welding of mild steel and 50kgf/mm² class high tensile strength weather proof steels for buildings, bridges and cars.

Characteristics

- W 7016N is an extra low hydrogen type electrode for all position welding of aluminum-killed steel and TMCP steel used at low temperature.
- · X-ray soundness and mechanical properties of weld metal are excellent.
- Weld metal is 0.5%Ni–Ti–B type, and has better notch toughness at –60°C and CTOD properties at temperature down to –30°C.

Notes on Usage

- Dry the electrodes at 350~400°C(662~752°F) for 60 minutes before use.
- · Keep the arc as short as possible.
- Pay attention not to exceed proper heat-input because excessive heat-input causes deterioration of impact values of all-weld metal.

Dia	. (mm)	2,6	3.2	4.0	5.0	6.0
Leng	th (mm)	350	350	400	400	450
Current	F	55~85	90~130	130~180	180~240	250~310
(A)	V–up & OH	50~80	80~120	110~170	150~200	-

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni	Ti	В
0.06	1.15	0.35	0.013	0.010	0.50	0.02	0.01

Typical Mechanical Properties of All-Weld Metal

Y.S (MPa)	T.S (MPa)	EL (%)	CVN-Impact Value J		
1.3 (IVIPA)	1,3 (IVIFa)	EL (70)	_45℃	-60°C	
490	560	31	150	110	

Welding of aluminum-killed steel for low temperature used for LPG tankers and LPG storage tanks.

Characteristics on Usage

- W 8016G is an extra low hydrogen type electrode for all position welding of aluminum-killed steel and TMCP steel used at low temperature.
- The weld metal contains about 1.6%Ni.
- \cdot Notch toughness of weld metal at low temperature (–40 \sim –50°C) is stable and good.

Notes on Usage

- Pay attention not to exceed proper heat-input because excessive causes deterioration of impact values of weld metal.
- Dry the electrodes at 350~400°C for about one hour before use.
- Adopt back step method or strike the arc on a small steel plate prepared for this particular purpose to prevent blowholes at the arc starting.
- · Keep the arc as short as possible.

Size mm (in)	2,6 (3/32)	3.2 (1/8)	4,0 (5/32)	5.0 (3/16)
Length mm(in)	350 (14)	350 (14)	400 (16)	400 (16)
F	55~85	90~130	130~180	190~240
V-up, OH	50~80	80~115	120~170	150~200

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni
0.06	1.05	0.50	0.010	0.009	1.61

Typical Mechanical Properties of All-Weld Metal

Y.S (N/mm ²)	T.S (N/mm ²)	EL (%)	CVN–Impact Value J (–46°C)	Heat Treatment
530	612	29	110	AW
511	600	32	120	620℃ X 1hr S · R

Welding positions

M A

W 8016C1

Applications

W 8016C1 is designed for welding of 2.5%Ni steel used in machinery for low temperature.

Characteristics

- W 8016C1 is a low hydrogen, all position electrode depositing weld metal comprising 2.5%Ni.
- · Good X-ray soundness and good usability.
- · Excellent impact value at -60°C.

Notes on Usage

- \bullet Preheat at 50 ${\sim}100\,^\circ\!\text{C}.$ The temperature varies in accordance with the plate thickness and steel kind,
- \cdot Dry the electrodes at 350~400 $^\circ \! \mathrm{C}$ for about one hour before use.
- Adopt back step method or strike the arc on a small steel plate prepared for this particular purpose to prevent blowholes at the arc starting.
- If each welded pass becomes thicker than acceptable level by high amperage or low speed ratio manipulation, the impact values and yield points will decrease.

Size mm (in)	2.6 (3/32)	3.2 (1/8)	4.0 (5/32)	5.0 (3/16)	6.0 (15/64)
Length mm(in)	350 (14)	350 (14)	400 (16)	400 (16)	450 (18)
F	55~90	90~130	130~190	190~240	250~300
V–up, OH	50~80	80~120	120~170	-	-

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni
0.06	0.92	0.44	0.011	0.006	2.39

Typical Mechanical Properties of All-Weld Metal

Y.S (N/mm ²)	T.S (N/mm ²)	EL (%)	CVN-Impact Value J (-60°C)	Heat Treatment
518	625	30	115	AW
492	578	33	126	620°C X 1hr S · R

W 8016C2

Applications

W 8016C2 is designed for welding of 3.5%Ni steel(ASTM A203 Gr. D,E) used for pressure vessels, storage tanks.

Characteristics on Usage

- W 8016C2 is an all positions extra low hydrogen type electrode for 3.5% Ni steel be used at low temperature (lowest -100°C)
- · Good toughness of all-weld metal at low temperature.

Notes on Usage

- Preheat at 50~100°C and postheat at 600~620°C. The preheat temperature varies in accordance with the plate thickness and the kind of steels.
- Dry the electrodes at 350~400°C for about one hour before use.
- Adopt back step method or strike the arc on a small steel plate prepared for this particular purpose to prevent blowholes at the arc starting.
- · Keep the arc as short as possible.

Size mm (in)	2,6 (3/32)	3,2 (1/8)	4.0 (5/32)	5.0 (3/16)	6.0 (15/64)
Length mm(in)	350 (14)	350 (14)	400 (16)	400 (16)	450 (18)
F	55~90	90~130	130~190	190~240	250~300
V–up, OH	50~80	80~120	120~170	150~200	-

Size Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni
0.05	0.54	0.38	0.010	0.009	3.52

Typical Mechanical Properties of All-Weld Metal

Y.S (N/mm ²)	T.S (N/mm ²)	EL (%)	CVN–Impact Value J (−75°C)	Heat Treatment
542	628	31	78	620°C X 1hr S \cdot R

Welding positions

M A

Welding of aluminum-killed steel for low temperature used for LPG tankers and LPG storage tanks.

Characteristics

- W-NF is a graphite type coated electrode whose weld metal has the composition of 55%Ni-45%Fe.
- As the hardening of fusion zone in cast iron is small and the coefficient of thermal expansion of the weld metal is about same as that of cast iron, mechanical properties and crack resistibility of the weld metal are good.

Notes on Usage

- · Clean base metal before welding.
- If there is a possibility that cracking spreads, make the stopholes at both ends of repairing part.
- It is not necessary preheating and postheating in general but satisfactory results can be obtained by preheating at 100~200°C in accordance with kind, shape and size of base metal.
- Keep the weld metal length less than 50mm(2 inch) to disperse welding heat.

Size mm (in)	2.6 (3/32)	3.2 (1/8)	4.0 (5/32)
Length mm(in)	350 (14)	350 (14)	400 (16)
F	60~90	80~120	120~150

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni	Fe
0.95	0.82	0.35	0.007	0.006	55.2	Rem

Typical Mechanical Properties of All-Weld Metal

T.S (N/mm ²)	Hardness (HRB)	
568	91	

KS D7008 DFC Ni AWS A5.15 ENi-CI JIS Z3252 DFC Ni

Applications

Repairing and filling up of cavities of various kinds of cast iron products such as cylinder covers, motorbeds, casings and gears. Repairing of mechanite cast iron, alloy cast iron and malleable cast iron.

Characteristics on Usage

- · W-NC is a graphite type coated electrode, depositing weld metal consisting of almost nickel.
- · Hardening of heat affected zone is small and machining of the welds is comparatively easy.
- Therefore it is suitable for welding alloy cast iron of poor weldability, malleable cast iron and hydraulically pressured parts as well as common cast iron.

Notes on Usage

- · Clean base metal before welding.
- If there is a possibility that cracking spreads, make the stopholes at both ends of repairing part.
- It is not necessary preheating and postheating in general but satisfactory results can be obtained by preheating at 100~200°C in accordance with kind, shape and size of base metal.
- Keep bead length less than 50mm to disperse welding heat. Adopt back step, stepping stone or symmetry method by turns.

Size mm (in)	2.6 (3/32)	3.2 (1/8)	4.0 (5/32)
Length mm(in)	350 (14)	350 (14)	400 (16)
F	60~90	80~120	120~150

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Ni	Fe
0.84	0.34	0.30	0.002	0.002	Rem	1.9

Typical Mechanical Properties of All-Weld Metal

T,S (N/mm ²)	Hardness (HRB)	
456	76	

Welding positions

M A

Repairing of various kinds of cast iron produtcs.

Characteristics

- · W-EST is a graphite type coated electrode, depositing weld metal consisting of pure iron.
- · It is designed for welding of cast iron when machining of the deposit is not required.
- · Hardness of the bonded area will be higher than that with nickel type electrode.

Notes on Usage

- · Clean base metal before welding.
- If there is a possibility that cracking spreads, make the stopholes at both ends of repairing part.
- It is not necessary preheating and postheating in general but satisfactory results can be obtained by preheating at 100~200°C in accordance with kind, shape and size of base metal.
- Keep the weld metal length less than 50mm(2 inch) to disperse welding heat.

Size mm (in)	2,6 (3/32)	3.2 (1/8)	4.0 (5/32)
Length mm(in)	350 (14)	350 (14)	400 (16)
F	60~90	80~120	120~150

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S
1.36	0.50	0.65	0.018	0.006

Typical Mechanical Properties of All-Weld Metal

T.S (N/mm ²)	Hardness (HRB)	
512	480	

Welding of 18%Cr-8%Ni steel

Characteristics on Usage

- · W 308 is a lime-rutile type electrode for 18%Cr-8%Ni steel with good usability.
- · Its weld metal has austenitic structure, crack resistibility is good.
- · Furthermore, its heat and corrosion resistibility are also good.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- · Dry the electrodes at 250~300℃(482~572°F) for 60~90 minutes before use.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.0	2.6	3.2	4.0	5.0
Leng	th (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	150~200
(A)	V–up & OH	25~45	45~75	60~110	95~140	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.04	1.00	0.80	0.017	0.007	19.1	9.71

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)
600	47

Welding positions

A W

Μ

W 308L For Low carbon 18%Cr-8%Ni Stainless steel

Applications

Welding of extra-low carbon 18%Cr-8%Ni stainless steel such as AISI 304L

Characteristics

- W 308L has extra-low carbon austenitic structure which contains suitable ferrite.
- · Crack resistibility is good and intergranular corrosion resistibility is superior to that of W 308.
- It is quite efficient because its burn-off rate and deposition rate are high because comparatively high amperage can be used.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Remove dirts such as oil and dust from the groove.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia, (mm)		2.0	2.6	3.2	4.0	5.0
Leng	ıth (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	150~200
(A)	V–up & OH	25~45	45~75	60~110	95~140	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.02	1.00	0.74	0.018	0.007	19.4	9.62

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)
590	48

Welding of 22%Cr-12%Ni steel and heat resistant cast steel Clad steel side welding of 304. Welding of stainless steel to carbon steel or low alloy steel.

Characteristics

- W 309 is a lime-rutile type electrode.
- · As the deposited weld metal contains ferrite in austenitic structure, its crack resistance is good
- As weld metal contains much quantity of alloying elements and has stable austenitic structure,
 W 309 is suitable for welding of the part which is affected by the dilution of mother plate.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Pay attention that the dilution of mother plate should not be excessive.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia. (mm)		2.0	2.6	3.2	4.0	5.0
Leng	ıth (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.07	1.00	0.79	0.017	0.007	24.2	12.62

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
600	39		

W 309L For Low Carbon 22%Cr-12%Ni Stainless steel

Applications

Welding of 22%Cr-Ni steel Welding of dissimilar metals and build-up welding of stainless steel on carbon steel or low alloy steel.

Characteristics

- W 309L is lime-rutile type electrodes for all-position welding, which has excellent usability
- As the all-weld metal contains extra low carbon and high content of delta ferrite, its corrosion and heat resistibility are also good.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- · Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Pay attention that the dilution of mother plate should not be excessive.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia. (mm)		2.0	2.6	3.2	4.0	5.0
Leng	th (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V-up & OH	25~45	45~75	60~110	90~140	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.03	1.00	0.80	0.016	0.006	24 <u>.</u> 21	12.62

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
595	43		

W 309Mo For 22%Cr-12%Ni-Mo Stainless steel

Applications

Welding of AISI(SUS) 316 to carbon steel. Clad steel side welding to AISI (SUS) 316.

Characteristics

- · W 309Mo is a lime-rutile type electrode.
- · It's heat and corrosion resistibility are good.
- · The slag removability and welded metal appearance are good.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Pay attention that the dilution of mother plate should not be excessive.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	Dia, (mm)		2.6	3.2	4.0	5.0
Leng	th (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	_

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.07	1.30	0.79	0.017	0.007	23.25	12.6	2.31

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
640	35		

Welding positions

S M A W

W 309MoL

For Low Carbon 22%Cr-12%Ni-Mo Stainless steel

Applications

Welding of extra-low carbon 22%Cr-12%Ni-2.5%Mo stainless steel.

Characteristics

- · W 309MoL is a lime-rutile type electrode.
- As the all-weld metal contains extra low carbon and high content of delta ferrite, its corrosion and heat resistibility are also good.
- · The slag removability and welded metal appearance are good.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- · Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Pay attention that the dilution of mother plate should not be excessive.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.0	2.6	3.2	4.0	5.0
Leng	th (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	-

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.03	1.32	0.75	0.023	0.008	23.21	12.98	2.31

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
650	36		

Welding of 18%Cr-12%Ni-3%Mo stainless steel, 13%Cr steel, 17%Cr steel and high toughness steel when postheating is not recommended use for welding between dissimilar metal like carbon steel and stainless steel.

Characteristics

- · W 316 is a lime-rutile type electrode provided with a good usability and weldability.
- · As the all-weld metal has an austenite structure including Mo.
- · The corrosion resistance against sulfide acid, phosphoric acid and acetic acid is excellent.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Remove dirts such as oil and scale from the groove.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.0	2.6	3.2	4.0	5.0
Leng	ıth (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	_

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.03	0.90	0.77	0.030	0.029	18.7	12.3	2.5

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
590	49		

Welding of extra-low carbon 18%Cr-12%Ni-Mo (316L stainless steel)

Characteristics

- · Extra-low carbon weld metal provided with a good usability and weldability
- As extra—low carbon weld metal can be obtained, intergranular corrosion resistibility is superior to that of W 316.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Remove dirts such as oil and scale from the groove.

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.0	2,6	3.2	4.0	5.0
Leng	th (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	-

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni	Мо
0.02	1.00	0.73	0.018	0.010	18.4	12.2	2.3

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)
584	48

Welding of AlSI(STS)310S stainless steel. Fabrication and repair of furnace linings, furnace grates, burners.

Characteristics

- W 310 is a lime-rutile type electrode for all-position welding, depositing weld metal of perfect austenitic structure.
- · Good mechanical property and heat resistance of the depodited weld metal.
- W 310 has high toughness in all welding condition.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- · Beware of cracking

Sizes Available and Recommended Currents (AC or DC \pm)

Dia	. (mm)	2.0	2,6	3.2	4.0	5.0
Leng	ıth (mm)	250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	-

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.11	1.75	0.38	0.022	0.009	26.1	20.8

Typical Mechanical Properties of All-Weld-Metal

T.S (MPa)	EL (%)		
588	40		

W 312 For 29%Cr-9%Ni Stainless steel

Applications

Bond welding of dissimilar metals such as stainless steel, carbon steel and low alloy steel. Welding of stainless clad steel.

Characteristics

- It is a lime-rutile type electrode, has an excellent usability and weldability. Chemical composition of all-weld metal is 29%Cr-9%Ni.
- Owing to the austenite structure containing large contents of ferrite, W 312 has a good crack resistibility.
- · It is used for welding dissimilar metals and under laying welding of hardsurfacing.

Notes on Usage

- · Keep the arc as short as possible and use currents as low as possible.
- Dry the electrodes at 250~300°C(482~572°F) for 60~90 minutes before use.
- Preheat the base metal at over 200°C(392°F) to prevent cracking in welding of high alloyed steel, having good hardenability such as tool steel.

Dia. (mm)		2.0	2.6	3.2	4.0	5.0
Length (mm)		250	300	350	350	350
Current	F	30~50	50~80	70~115	100~150	140~190
(A)	V–up & OH	25~45	45~75	60~110	90~140	-

Sizes Available and Recommended Currents (AC or DC \pm)

Typical Chemical Composition of All-Weld Metal (wt%)

С	Mn	Si	Р	S	Cr	Ni
0.10	1.49	0.40	0.022	0.010	29.2	9.5

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)		
802	27		

KS D7021 DNiCrMo-3 AWS A5.11 ENiCrMo-3 JIS Z3224 DNiCrMo-3

Applications

W 625 is designed for welding of Inconel 600 + 625 and Nickel alloys, 9% Nickel steels. (LNG storage tank manufacture, desulfurization, Heat exchanger, Building of chemical carrier)

Characteristics

- Suitable in pressure vessel fabrication for -196°C to 550°C, otherwise up to the scaling resistance temperature of 1200°C.
- The weld metal has high strength at room and elevated temperatures and has exceptional corrosion resistance.
- It is useful for many dissimilar joints involving inconel alloys, incoloy alloys, stainless steels, low-alloy steel, and carbon steel.

Notes on Usage

- · Use recommended current range, if not, it will be much spatters and undercut.
- · Keep the arc as short as possible.
- · Weaving width should be within two and a half times electrode's diameter.
- * When the electrodes have absorbed moisture, dry them at 250~300°C for 30~60 minutes before use.

Sizes Available and Recommended	Currents (DC +)
---------------------------------	------------	-------

	Size mm (in)	3.2 (1/8)	4.0 (5/32)	
Length mm(in)		350 (14)	400 (16)	
Amp	F	90~120	120~150	
Amp	V–up & OH	80~110	100~140	

Typical Chemical Composition of All-Weld Metal(%)

С	Mn	Si	Р	S	Cr	Ni	Мо	Nb+Ta	Fe
0.03	0.7	0.52	0.002	0.003	21.9	61.6	8.4	3.7	2.2

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)	CVN–Impact Value J (−196℃)		
772	40	68		

Pumps, valves, pipework and vessels for use in aggressive environments in chemical process plants, also in equipment for flue gas desulphurization and critical equipment in offshore oil and gas production.

Characteristics

- · It can be used for surfacing steels and dissimilar welding of nickel alloys, steels and stainless steels.
- · The weld metal has excellent resistance on pitting and crevice corrosion.

Notes on Usage

- · Use recommended current range, if not, it will be much spatters and undercut.
- · Keep the arc as short as possible.
- · Weaving width should be within two and a half times electrode's diameter.
- When the electrodes have absorbed moisture, dry them at 250~280°C for 30~60 minutes before use.

Sizes Available and Recommended Currents (DC +)

	Size mm (in)	3.2 (1/8)	4.0 (5/32)	
Length mm(in)		350 (14)	400 (16)	
A.man	F	80~120	120~150	
Amp	V&OH	75~110	100~140	

Typical Chemical Composition of All-Weld Metal(%)

С	Mn	Si	Р	S	Cr	Ni	W	Fe	Мо
0.01	0.62	0.16	0.006	0.005	15.2	59.1	3.6	5.5	15.8

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)	CVN-Impact Value J (-196°C)		
728	39	65		

W 182 is designed for Welding of INCONEL (INCONEL 600, INCOLOY 800), dissimilar welding of INCONEL and carbon steel, stainless steel, INCONEL and nickel alloy, 9%Ni.

Characteristics

- These weld metals have no directly equivalent parent materials, although the composition is related to INCONEL 600.
- Mn and Nb are added to give high resistance to hot cracking, tolerance to dilution by many combinations of nickel-base and ferrous alloys.

Notes on Usage

- · Use recommended current range. if not, it will be much spatters and undercut.
- · Keep the arc as short as possible.
- · Weaving width should be within two and a half times electrode's diameter.
- When the electrodes have absorbed moisture, dry them at 250~300°C for 30~60 minutes before use.

	Size mm (in)	3.2 (1/8)	4.0 (5/32)		
	Length mm(in)	350 (14)	400 (16)		
A.man	F	80~120	120~150		
Amp	V&OH	75~110	100~140		

Typical Chemical Composition of All-Weld Metal(%)

Sizes Available and Recommended Currents (DC +)

С	Mn	Si	Р	S	Cr	Ni	Nb+Ta	Fe
0.04	6.2	0.6	0.003	0.005	16.2	69.2	1.8	4.9

Typical Mechanical Properties of All-Weld Metal

T.S (MPa)	EL (%)
651	40

Submerged Arc Welding Consumables

Mild steel & 490MPa high tensile steels Stainless steels ESW

WF-774 X WS-14

TYPE : Basic

KS B0531 S502-H AWS A5.17 F7A4×EM14 JIS Z3183 S502-H

Applications

Horizontal welding of oil storage tanks, ships, bridges, Pressure vessels, penstocks, boilers and structural steels.

Characteristics on Usage

Inactive, neutral type bonded flux which is applicable to all kinds of wire. Impact value of
weld metal and crack resistibility are good. Slag detachability in the groove and resistance to
porosity are good. Usability in horizontal fillet welding and X-ray performance dre good.

Notes on Usage

- · Dry the flux at 300~350℃ (572~662°F) for 60 minutes before use.
- Remove rust, scales, oil, paint, water, dirt and slag of tack welds from the groove to obtain sound weld metal.
- · Use welding current and speed as low as possible at the first layer of groove to avoid cracking.
- Preheat at 50~100°C (122~212°F) according to base metal and plate thickness. Keep interpass temperature at 100~250°C (212~482°F)

Th. (mm)	Dia. (mm)	Groove Design		^e ass n NO.)	Amp (A)	Volt. (V)	Speed (cm/min)	Remarks
25	4.0	30	1~13		570	30	40	AWS A5.17
			1.04	1	450	28	35	
28			1st	2~4	500	26	50	Horizontal
		2nd	5	450	28	35	ML	
		Znu	6~8	500	26	50		

Typical Welding Conditions

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Si	Mn	Р	S	BM	Th.(mm)
0.08	0.31	1.60	0.025	0.019	SS400	25
0.07	0.40	1.53	0.020	0.013	SM490	28

Y.S T.S		EL	CVN-Impact \	/alue J (ft · Ibs)	BM	Th.
MPa(kgf/mm²)	MPa(kgf/mm²)	(%)	-20°C	_51℃	DIVI	(mm)
510 (52)	570 (58)	31	-	110 (11)	SS400	25
-	540 (55)	-	60 (6)	-	SM490	28

WF-772 X WS-12K

Butt and tlat fillet welding of bridges and API Line-pipe. (longitudinal)

Characteristics on Usage

 WF-771 X WS-12K are well suited for high speed welding in thin plate. It is comparatively insensitive to rust, scales, oil and dirt and primers on the surface to be welded. Slag detachability and bead appearance are very good.

Suitable for welding of thin and medium plate in high speed welding.

As the consumption of flux is low, it is very economical.

Notes on Usage

- Dry the flux at 300~350°C (572~662°F) for 60 minutes before use.
- · When the flux height is excessive, poor bead appearance may occur.
- · Use welding current and speed as low as possible at the first layer of groove to avoid cracking.

Typical Welding Conditions

Th. (mm)	Dia. (mm)	Groove Design	Pass	Amp (A)	Volt (V)	Speed (cm/min)	Remarke
25	4.0	30'	1~15	550	29	40~45	AWS A5.17
44	4.0	1st	1st	500	32	40	Both Side
44	14 4.0 Ind	2st	500	32	40	Single-pass	

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Mn	Si	Р	S	BM
0.06	1.67	0.46	0.021	0.014	SS41(25)
0.07	1.52	0.44	0.019	0.013	SM50A(20)

Y.S	T,S EL		CVN-Impact V	/alue J (ft · Ibs)	BM	PWHT
MPa(kg/mm²)	MPa(kg/mm²)	(%)	0°C	-29℃	(mm)	PVVHI
468 (48)	560 (57)	28	70 (7.1)	40 (4.0)	SM41(25)	AW
-	576 (59)	-	50 (5.1)	-	SM50A(20)	Avv

WF-774 X WS-12K

TYPE : Basic

KS B0531 S502-H AWS A5.17 F7A4×EM12K JIS Z3183 S502-H

Applications

Multi-layer welding of various kinds of structure such as ship buildings, offshore structures, machinery, pressure vessels, large diameter and heavy wall steel pipe.

Characteristics on Usage

 It produces the weld metal which has excellent impact value at low temperature service. Single and Multi electrode welding can be performed, It has excellent X-ray characteristics and slag removal, because of insensiticity to rust, scale, primer on the surface to be welded.

Notes on Usage

- · Dry the flux at 300~350℃ (572~662°F) for 60 minutes before use.
- · When the flux height is excessive, poor bead appearance may occur.
- Use welding current and speed as low as possible at the first layer of groove to avoid cracking.

Th. (mm)	Dia. (mm)	Groove Design	F	Pass	Amp (A)	Volt (V)	Speed (cm/min)	Remarks	
25	4.0		1~13		570	30	40	AWS A5.17	
		1st 60%	1st	1	500	32	40		
	44 4.0			131	2~14	600	36	50	
44				Ba	ack goug	Both side Multi–pass			
		14	2st	14	500	32	40	101010 0000	
		2nd 70770	ZSI	16~23	600	36	50		

Typical Welding Conditions

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Si	Mn	Р	S	BM	Th.(mm)
0.09	0.26	1.40	0.023	0.004	SS400	25
0.08	0.54	1.47	0.025	0.018	BS4360-GR.50D	44

Y.S	1.0 1.0		CVN-Impact \	/alue J (ft · lbs)	BM	Th.
MPa(kgf/mm²)			−20°C	51℃	DIVI	(mm)
555 (57)	614 (63)	29	-	60 (6)	SS400	25
510 (52)	580 (59)	28	70 (7)	-	BS4360-GR.50D	44

WF-770 X WS-14

Applications

Butt and flat fillet welding of buildings, bridges and API Line-pipe. (Longitudinal)

Characteristics on Usage

 It procides good bead appearance, better slag removal and high impact value of the weld metal. It is relatively Insenitive to rust and makes better resistance to pockmark and pit. High impact values in both multi-run and two-run technique. As the consumption of flux is low, it is very economical.

Notes on Usage

- Dry the flux at 300~350℃ (572~662°F) for 60 minutes before use.
- · When the flux height is excessive, poor bead appearance may occur.
- Use welding current and speed as low as possible at the first layer of groove to avoid cracking.

Typical Welding Conditions

Th. (mm)	Dia. (mm)	Groove Design	pass (Run NO.)	Amp (A)	Volt (V)	Speed (cm/min)	Remarks
25	4.0	30 12.5	1~13	570	30	40	AWS A5.17

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Si	Mn	Р	S	BM	Th.(mm)
0.06	0.52	1.45	0.024	0.016	SS400	25

Y.S	T.S	EL	CVN-Impact V	/alue J (ft · Ibs)	PWHT	DM	Th.
MPa(lbs/in²)	MPa(lbs/in²)	(%)	0°C	−18°C	PVVIII	BM	(mm)
510 (52)	560 (57)	28.6	42	_	As Welded	SS400	25

WF-770 X WS-L8

TYPE : Basic

KS B0531 S502-H AWS A5.17 F7A0×EL8 JIS Z3183 S502-H

Applications

Single-layer and multi-layer welding of shipbuilngs.

Characteristics on Usage

 As the penetration deep, it is suitable for welding of thick plate in both side single–layer welding. Impact value (or mechanical priperties) of weld metal and crack resistibility are excellent. also applicable to one–side welding. As the consumption of flux is low, It is economical.

Notes on Usage

- · Dry the flux at 300~350℃ (572~662°F) for 60 minutes before use.
- Pay attention to welding voltage. Excessive welding voltage causes deterioration of joint properties.
- Add new flux periodically to prevent the weld defects and bad bead appearance which occurs when continuously reusing the flux.
- Weld pass should be limited to 3 or 4 passes, (please inquire of the manufactures when welding more than 5 passes)

Th. (mm)	Dia. (mm)	Groove Design	Pass (Run NO.)	Amp (A)	Volt (V)	Speed (cm/min)	Remarks
25	4.0	30'	1~13	570	30	40	AWS A5.17
25	4.8		1st	950	34	40	BS SL
20	4.0	2nd 70 10	2nd	1100	37	30	DO OL

Typical Welding Conditions

Typical Chemical Composition of All-Weld-Metal (wt%)

С	Si	Mn	Р	S	BM	Th.(mm)
0.07	0.40	1.40	0.028	0.015	SS400	25
0.08	0.32	1.29	0.015	0.014	AH36	25

Y.S	T.S	EL	CVN-Impact \	/alue J (ft · lbs)	DM	Th.
MPa(lbs/in²)	MPa(lbs/in²)	(%)	-20°C	_51℃	BM	(mm)
490 (50)	560 (57)	31	-	70 (7)	SS400	25
-	570 (58)	-	40 (4)	-	AH36	44

WF-300 For Srainless steel and duplex stainless steel

Applications

WF 300 is a basic non-alloying agglomerated flux for the submerged arc welding of stainless steels and high-alloyed Cr Ni Mo steels including duplex stainless steels.

Characteristics

- · Excellent weldability such as stable arc and easy slag removal.
- Excellent impact value at low temperature down to −196°C.
- · The weld metals show good mechanical properties.
- · Exceesive flux height may bring out poor bead appearance.
- Redry the flux at 250∼350°C for 60 minutes before use.
- · Add new flux periodically when continuously reusing the flux.

Wire	С	Mn	Si	Cr	Ni	Мо	Ν
WS-308L	0.02	1.5	0.6	19.6	9.5	_	-
WS-309L	0.02	1.6	0.5	23.2	13.3	-	-
WS-316L	0.02	1.3	0.6	18.8	11.8	2.3	-
WS-2209	0.02	1.3	0.5	22.3	8.6	3.2	0.1

Typical Chemical Composition of All-Weld Metal(%)

Wire	Y.S.	T.S.	El.	IV	(J)	Remarks
WIE	(MPa)	(MPa)	(%)	-60°C	−196°C	Remains
WS-308L	394	567	41	87	62	As-Welded
WS-309L	428	582	38	98	72	As-Welded
WS-316L	402	568	40	85	66	As-Welded
WS-2209	649	812	36	64	-	As-Welded

WES-625 + WQ-625

For Nickel alloyed Strip Cladding Applications (ESW)

Applications

WES 625 is high-basic agglomerated electrosalg welding flux used in combination with high nikel alloyed stip.

Characteristics

- · Excellent bead appearance and slag removal.
- · The weld bead has high hot cracking resistance.
- · The flux is suitable for weld overlay in petrochemical and nuclear applications.
- Redry the flux at 250∼350°C for 60 minutes before use.
- · Add new flux periodically when continuously reusing the flux.

Current condition : DC +

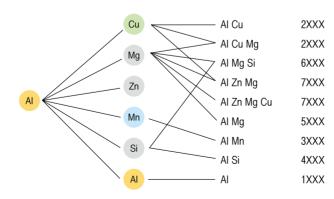
Basicity index: 4.0

Typical Chemical Composition of All-Weld Metal(%)

	Strip		С	Mn	Si	Cr	Ni	Мо	Nb
WQ	-625	1 st layer	0.02	0.09	0.31	19.8	Rem	7.9	2.9
WQ	-625	2 nd layer	0.02	0.07	0.28	20.7	Rem	8.2	3.2

Packages - Strip

Width (mm)	Thickness (mm)	Туре	Weight (kg)		
25.4	0.5	Coil	25		
50.8	0.5	Coil	50		
60	0.5	Coil	50		


Packages - Flux

Mesh size	Туре	Weight (kg)		
12x60	Can	20		

For Aluminum Based-Alloy

Brand	AWS		Typical chemical Coum position (%)									
name	AVIO	Si	Fe	Cu	Mn	Mg	Ti	etc	AI			
1100	ER1100	Si+Fe :	≦0.95	0.05~0.20	≦ 0.05	-	-		≧ 99.0			
2319	ER2319	≦0.20	≦0.30	5.8~6.8	0.20~0.40	≦ 0.02	0.10~0.20					
4043	ER4043	4.5~60			≦ 0.05	≦ 0.05	≦0.20					
4047	ER4047	11.0~13.0	≦0.80	≦0.30	≦ 0.15	≦ 0.10	-					
4643	ER4643	3.6~4.6			≦ 0.05	0.10~0.30	≦0.15					
5180	ER5180	Si+Fe :	≦0.35		0.20~0.70	3.5~4.5	0.06~0.20		Rem			
5183	ER5183	≦ 0.40		≤ 0.10	0.50~1.0	4.3~5.2	≦0.15					
5356	ER5356		≦0.40		0.05~0.20	4.5~5.5	0.06~0.20	≧0.15				
5554	ER5554	≦0.25			0.50.4.0	2.4~3.0	0.05~0.20					
5556	ER5556				0.50~1.0	4.7~5.5	0.03 0.20					
5654	ER5654	Si+Fe :	≦0.45	≦0.05	≦ 0.01	3.1~3.9	0.05~0.15					

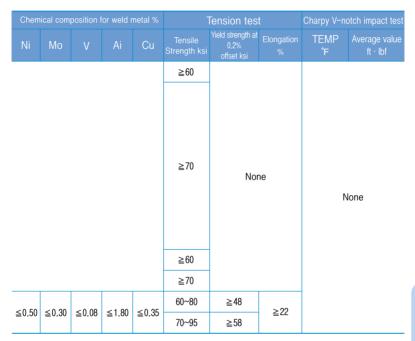
shielding gas : Ar Dia : 1.2~4.8mmØ

AWS SPECIFICATION FOR WELDING CONSUMABLES

For carbon steel electrodes for flux cored arc welding(AWS A5.20-2005)

				С	hemical o	composit	ion for w	eld meta	%
AWS Classification	Shielding Gas	Polartiy	Applica -tion	С	Mn	Si	S	Р	Cr
E70T-1C ^a	CO2								
E70T-1M ^a	75~80%Ar+CO₂								
E71T-1C ^a	CO2	DCEP							
E71T-1M ^a	75~80%Ar+CO₂	DOLI							
E70T-5Cª	CO2								
E70T-5Mª	75~80%Ar+CO₂			≦0.12	≦1.75	≦0.90			
E71T-5Cª	CO2	DCEP		≧0.12	≧1.75	≧0.90			
E71T-5M ^a	75~80%Ar+CO₂	DCEN							≤0.20
E70T-9C ^a	CO2								
E70T-9M ^a	75~80%Ar+CO₂								
E71T-9Cª	CO2								
E71T-9Mª	75~80%Ar+CO₂		м				≦0.03	≦0.03	
E70T-12C ^a	CO2	DOED	141		≦1.60		≥0.03	≥0.03	
E71T-12Mª	75~80%Ar+CO2	DCEP		≦0.12		≦0.90			
E71T-12C ^a	CO2			≧0.12	≧1.00				
E71T-12Mª	75~80%Ar+CO₂								
E70T-4									
E70T-6ª									
E70T-7									
E71T-7	None			~ 0.20	< 1.75	~ 0.60			
E70T-8ª	None			≦0.30	≦1.75	≦0.60			
E71T-8ª		DCEN							
E70T-11									
E71T-11									

Chemi	Chemical composition for weld metal %			metal %	Tension test			Charpy V-no	otch impact test	
Ni	Мо		Ai	Cu	Tensile Strength ksi	Yield strength at 0.2% offset ksi	Elongation %	TEMP °F	Average value ft · lbf	
									0	
					70~95	≥58	22	-20	≧20	
≦0.50	≦0.30	≦0.08	≦1.8	≦0.35	70~90		70~90			
									lone	
					70~95	> 50		-20 N	≧20 Ione	
						≧58		-20	≧20	
							≧20	N	lone	


AWS SPECIFICATION FOR WELDING CONSUMABLES

A1A/C	Objective	Polartiy	Applica -tion	Chemical composition for weld metal %						
AWS Classification	Shielding Gas			С	Mn	Si	Ρ	S	Cr	
E61T-13	N/A	DCEN								
E70T−2C ^b	CO2									
E70T−2M ^b	75~80%Ar+CO₂	DCEP								
E71T-2C ^b	CO2									
E71T−2M ^b	75~80%Ar+CO₂									
E70T−3 ^ь			S	None						
E70T-10 ^b	None	DCEN								
E70T-13 ^b	None									
E71T-14 ^b										
E6XT−GS ^b										
E7XT−GS ^b	None									
E6XT−G°				-1	< 1 7F	<0.00	< 0.00	< 0.00	< 0.00	
E7XT−G°			М	d	≦1.75	≦0.90	≦0.03	≦0.03	≦0.20	

Carbon steel electrodes for flux cored arc welding (AWS A5.20-2005)

Remarks a) Electrodes with optional supplemental designations shall meet the lower temperature impact requirements. in case the use of letter "J" as a suffix to a classification requires lower impact temperature, -40°F

- b) E7XT-5 and E7XT-5M electrodes have a rutile base slag. E7XT-9 and E7XT-9M electrodes hace a rutile base slag.
- c) M=single or multiple pass:S = single pass only
- d) E7XT-13 electrodes can be used in all positions for the root pass on circumferential pipe welds, and E7XT-14 electrodes can be used to make welds at high speed.
- e) The total of all elements listed in this table shall not exceed 5 percent.

Notes 1.EX0T-X is for flat and horizontal position only:EX1T-X is for all positions.

AWS SPECIFICATION FOR WELDING CONSUMABLES

Stainless steel electrodes for flux cored arc welding and stainless steel flux cored wires for gas tungsten arc welding (AWS A5.22-2007)-1

	Chemical composition for weld metal %							
AWS Classification	С	Cr	Ni	Мо	Cb(Nb)+ Ta	Mn	Si	
E307TX-X	≦0.13	18.0~20.5	9.0~10.5	0.5~1.5		3.30~4.75		
E308TX-X	≦0.08	18.0~21.0	9.0~11.0	≦0.5				
E308LTX-X	≦0.04	18.0~21.0	9.0~11.0	≦0.5				
E308HTX-X	0.04~0.08	18.0~21.0	9.0~11.0	≦0.5	-			
E308MoTX-X	≦0.08	18.0~21.0	9.0~11.0	2.0~3.0				
E309TX-X	≦0.04	18.0~21.0	9.0~12.0	2.0~3.0				
E309LCbTX-X	≦0.10	22.0~25.0	12.0~14.0	≦0.5		0.5~2.5		
E309LTX-X	≦0.04	22.0~25.0	12.0~14.0	≦0.5	0.70~1.00			
E309MoTX-X	≦0.04	22.0~25.0	12.0~14.0	≦0.5	-		≤1.0	
E309LMoTX-X	≦0.12	21.0~25.0	12.0~16.0	2.0~3.0				
E309LNiMoTX-X	≦0.04	21.0~25.0	12.0~16.0	2.0~3.0				
E310TX-X	≦0.04	20.5~23.5	15.0~17.0	2.5~3.5				
E312TX-X	≦0.20	25.0~28.0	20.0~22.5	≦0.5	-	1.0~2.5		
E316TX-X	≦0.15	28.0~32.0	8.0~10.5	≦0.5				
E316LTX-X	≦0.08	17.0~20.0	11.0~14.0	2.0~3.0				
E317LTX-X	≦0.04	17.0~20.0	11.0~14.0	2.0~3.0		0.5~2.5		
E347TX-X	≦0.04	18.0~21.0	12.0~14.0	3.0~4.0	8×C%~1.0		-	
E409TX-X ^a	≦0.08	18.0~21.0	9.0~11.0	≦0.5				
E307TX-X	≦0.10	10.5~13.5	≦0.60	≦0.5		≦0.80		
E307TX-X	≦0.12	11.0~13.5	≦0.60	≦0.5	-	≦1.2		
E410TX-X	≦0.06	11.0~12.5	4.0~5.0	0.40~0.70		≦1.0		

Chemica	Chemical composition for weld metal %			Tension test				
Ρ	S	N	Cu	Tensile Strength ksi	Elongation %	Heat Treatment		
		_	≤0.5	≧85	≧30	-		
				≧80		-		
				≧75		-		
				× 00	≧35	-		
				≧80		-		
				≧75		_		
≦0.04	≤0.03			≧80		-		
				≧75	≧30	-		
						-		
				≧80		-		
				≧75	≧25	-		
						-		
				≧80	≧30	-		
≦0.03				≧95	≧22	-		
				≧75	≧30	-		
				≧70	_ 00	-		
≦0.04				≧75	≧20	-		
				=10	≧30	-		
				≧65	≧15	-		
				≧75	≧20	A		
				≧110	≧15	В		

AWS SPECIFICATION FOR WELDING CONSUMABLES

Stainless steel electrodes for flux cored arc welding and stainless steel flux cored wires for gas tungsten arc welding (AWS A5.22-2007)-2

	Chemical composition for weld metal %							
AWS Classification	С	Cr	Ni	Мо	Cb(Nb)+ Ta	Mn	Si	
E410NiTiTX-X ^a	≦0.04	11.0~12.0	3.6~4.5	≦0.5		≦0.70	≦0.50	
E430TX-X		15.0~18.0	≦0.60	⊒0.5		≦1.2	≤1.0	
E502TX-X	≦0.10	4.0~6.0	≦0.40	0.45~0.65				
E505TX-X		8.0~10.5	20.10	0.85~1.20	-			
E307T0-3	≦0.13		9.0~10.5	0.5~1.5		3.30~4.75		
E308T0-3	≦0.08	19.5~22.0		≦0.5		0.5~2.5		
E308LT0-3	≦0.03	19.5~22.0						
E308HT0-3	0.04~0.08		9.0~11.0					
E308MoT0-3	≦0.08	18.0~21.0		2.0~3.0				
E308LMoT0-3	≦0.03	10.0 21.0	9.0~12.0	2.0**3.0				
E308HMoT0-3	0.07~0.12	19.0~21.5	9.0~10.7	1.8~2.4		1.25~2.25	0.25~0.80	
E309T0-3	≦0.10							
E309LCbT0-3	≦0.30	23.0~25.5	12.0~14.0	≦0.5	0.70~1.00	0.5~2.5	≤1.0	
E309LT0-3	⊒0.00							
E309MoT0-3	≦0.12	21.0~25.0	12.0~16.0	2.0~3.0				
E309LMoT0-3	≦0.04	21.0*23.0	12.0*10.0 2.0*3	2.0~3.0				
E310T0-3	≦0.20	25.0~28.0	20.0~22.5	≤0.5	_	1.0~2.5		
E312T0-3	≦0.15	28.0~32.0	8.0~10.5	⊒0.0		0.5~2.5		
E316T0-3	≦0.08	18 0~20 5	11.0~14.0	2.0~3.0				
E316LT0-3	≦0.03	18.0~20.5						
E316LKT0-3	≦0.04	17.0~20.0	.0~20.0					

Chemical composition for weld metal %			Tension test				
Р	S	N	Cu	Tensile Strength ksi	Elongation %	Heat Treatment	
			≤0.5	≧110	≧15	В	
				≧65	≧65		С
				≧60	≥20	D	
				≧ 00		D	
				≧85	≧30	-	
				≧80		-	
				≧75		-	
				≧80	≧35	-	
						-	
		0.30 –		≧75		-	
≦0.04	≦0.30			≧80	≥30	-	
						-	
				≧75		-	
				<u></u> ≝73		-	
				≧80	≧25	-	
				≧70	<u>~</u> 23	-	
				≧58	≧30	-	
				≧95	≧22	-	
				≥75		-	
				≧70	≧30	-	
				= 10		-	

AWS SPECIFICATION FOR WELDING CONSUMABLES

Stainless steel electrodes for flux cored arc welding and stainless steel flux cored wires for gas tungsten arc welding (AWS A5.22–2007)–3

A)A/O		Ch	nemical con	nposition fo	r weld meta	al %	
AWS Classification	С	Cr	Ni	Мо	Cb(Nb)+ Ta	Mn	Si
E317LT0-3ª	≦0.03	18.5~21.0	13.0~15.0	3.0~4.0	-	0.5~2.5	
E347T0-3	≦0.08	19.0~21.5	9.0~11.0		8XC%~1.0	0.5 2.5	
E409T0-3ª	≦0.10	10.5~13.5	≦0.60	≦0.5		≦0.80	≦1.0
E410T0-3	≦0.12	11.0~13.5	⊒0.00			≦1.0	
E410NiMoT0-3	≦0.06	11.0~12.5	4.0~5.0	0.40~0.70		⊒1.0	
E410NiTiT0-3ª	≦0.04	11.0~12.0	3.6~4.5	≦0.5	-	≦0.70	≦0.50
E430T0-3	≦0.10	15.0~18.0	≦0.60	≧0.5		≦1.0	≤1.0
E2209TX-X	≦0.04	21.0~24.0	7.5~10.0	2.5~4.0		0.5~2.0	≧1.0
E2553TX-X	≧0.04	24.0~27.0	8.5~10.5	2.9~3.9		0.5~1.5	≦0.75
EXXXTX-G			Ν	lot specifie	d		
R308LT1-5		18.5~21.0	9.0~11.0	< 0.5			
R309LT1-5	≦0.30	22.0~25.0	12.0~14.0	≦0.5	-	0.5~2.5	≦1.2
R316LT1-5		17.0~20.0	11.0~14.0	2.0~3.0		0.072.0	⊇1.2
R347T1-5	≦0.08	18.0~21.0	9.0~11.0	≦0.5	8XC%~1.0		

Remarks $a: Ti = 10 \times C \% \sim 1.5$

Notes 1) "EXXXTX-X" elctrodes indicate flux cored wire : "RXXXT1-5" electrods indicate flux cored rods.

- Notes 2) The "X" after "T" designates the position of operation. A "0" indicates flat or horizontal operation: B"1" indicates all position operation.
- Notes 3) The "X" after "EXXXTX-" or " RXXXTX-" designates the external shielding medium to be employed during welding as follows: 1: CO₂, 3: NONE, 4:75–80% Ar/balance CO₂, 5: Ar
- Notes 4) The amount of those elements shall be determined to ensure that their total (excluding iron) does not exceed 0.50%

Chemica	al composit	ion for weld	I metal %		Tension test				
Р	S	Ν	Cu	Tensile Strength ksi	Elongation %	Heat Treatment			
				≧75	≧20	-			
					<i>≧1</i> 3	≧30	-		
≦0.04				≧65	≧15	-			
		-	≦0.5	≧75	≧20	A			
	≦0.03		≧0.5	≧0.5	≧0.5	≧0.5	≥110 ≥15	>1€	В
≦0.03				2110	≧ 10	В			
				≧65	≧20	С			
≦0.04		0.08~0.20		≧100	<u>2</u> 20	-			
		0.10~0.20	1.5~2.5	≧110	≧15	-			
				Not specified					
				> 75	≧35	_			
				≧75		_			

Notes 5) The symbols for heat treatment is as follows:

≤0.5

≤0.04

≤0.30

A: The weld test assembly shall be heated to a temperature between 1350 and 1400°F, held for 1hour, then furnace cooled to 600°F at a rate not to exceed 100°F per hour, then cooled in air to room temperature.

≥70

≥75

≥30

_

- B: The weld test assembly shall be heated to a temperature between 1100 and 1150°F, held for 1 hour, then cooled in air to room temperature.
- C: The weld test assembly shall be heated to a temperature between 1400 and 1450°F, held for 4hour, then furnace cooled to 1100°F at a rate not to exceed 100°F per hour, then cooled in air to room temperature.
- D: The weld test assembly shall be heated to a temperature between 1550 and 1600°F, held for 2hour, then furnace cooled to 1100°F at a rate not to exceed 100°F per hour, then cooled in air to room temperature.

A p p e n d i x

AWS SPECIFICATION FOR WELDING CONSUMABLES

Low-alloy steel electrodes for flux cored arc welding(AWS A5.29–2005) 1. Chemical composition requirements for undiluted weld metal

AWS			С	hemica	l comp	osition	for wel	d metal	%		
Classification	С	Mn	Ρ	S	Si	Ni	Cr	Мо	V	AI ^{a)}	Cu
C-Mo steel electrode	es										
E7XT5-A1, -A1M	≤0.12	≤1.25	≤0.03	≤0.03	~ 0 00		_	0.40		_	_
E8XT5-A1, -A2M	≧0.12	≥1.20	≥0.03	≧0.03	≧0.00		_	~0.65	_	_	
Cr-Mo steel electrod	es										
E8XT1-B1, -B1M	0.05 ~0.12						0.40				
E8XT1-BIL, -B2LM	≦0.05						~0.65				
E8XT1-B2, -B2M	0.05										
E8XT5-B2, -B2M	~0.12							0.40 ~0.65			
E8XT1-B2L, -B2LM	< 0.0E						1.00 ~1.50				
E8XT5-B2L, -B2LM	≦0.05		-0.00		-0.00						
E8XT1-B2H, -B2HM	0.10 ~0.15		≦0.03		≦0.80	-					-
E9XT1-B3, -B3M		≦1.25		≦0.03						_	
E9XT5-B3, -B3M	0.05 ~0.12	≧1.20		≧0.03							
E10XT1-B3, -B3M							2.00 ~2.50	0.90 ~1.20			
E9XT1-B3L, -B3LM	≦0.05										
E9XT1-B3H, -B3HM	0.10 ~0.15										
E8XT5-B6, -B6M	0.05 ~0.12						4.0	0.40			
E8XT5-B6L, -B6LM	≦0.05				-10	-0.40	~6.0	~0.65			-0.50
E8XT5-B8, -B8M	0.05 ~0.12				≦1.0	≦0.40	8.0	0.85			≦0.50
E8XT5-B8L, -B8LM	≤0.05		≦0.03				~10.5	~1.20			
Ni steel electrodes											
E7XT8-Ni1	≦0.12	≦1.50	≦0.03	≦0.03	≦0.80	8.0 ~1.10	≦0.15	≦0.35	≦0.05	≦1.8	-

AWS			C	Chemica	al comp	osition	for we	ld meta	ıl %		
Classification	С	Mn	Ρ	S	Si	Ni	Cr	Мо	V	Al 🛛	Cu
E7XT6-Ni1										≦1.8	
E6XT1-Ni1, Ni1M						0.80	≦0.15	≦0.35	≦0.05		
E8XT1-Ni1, Ni1M						~1.10	≧0.15	≧0.55	≧0.05		
E8XT5-Ni1, Ni1M											
E8XT1-Ni2, Ni2M										-	
E8XT5-Ni2, Ni2M	≤0.12	≦1.50	≦0.03	≦0.03	≦0.80						_
E9XT1-Ni2, Ni2M	1≧0.12	≧1.30	≧0.03	≧0.03	≧0.00	1.75 ~2.75					
E7XT8-Ni2										~10	
E8XT8-Ni2							_	-	-	≦1.8	
E8XT5-Ni3, Ni3M											
E9XT5-Ni3, Ni3M						2.75 ~3.75				-	
E8XT11-Ni3										≦1.8	
Mn-Mo steel electro	des	1	1	1	1	1	1	1	1		

E9XT1-D1, -D1M	≦0.12	1.25 ~2.00									
E9XT5-D2, -D2M	≦0.15	1.65 ~2.25	< 0.03	< 0.03	≦0.80	_	_	0.25 ~0.55	_	_	_
E10XT5-D2, -D2M	20.15	~2.25	2.25	=0.00	_0.00						
E9XT1-D3C, -D3M	≦0.12	1.00 ~1.75						0.40 ~0.65			

Other low-alloy steel electrodes and rods

E8XT5-K1, -K1M		0.80 ~1.40				0.80 ~1.10		0.20 ~0.65		-	
E7XT4-K2	≤0.15		~ 0.02	≦0.03	~ 0 00		≤0.15		≤0.05		
E7XT7-K2	≥0.15	0.50 ~1.75	≧0.03	≧0.03	≧0.00	1.00 ~2.00	≥0.13	≦0.35	≥0.05	≦1.8	-
E7XT8-K2											

AWS SPECIFICATION FOR WELDING CONSUMABLES

AWS			С	hemica	l comp	osition	for weld	d metal	%		
Classification	С	Mn	Р	S	Si	Ni	Cr	Мо		Al ®	Cu
E8XT1-K2, K2M											
E9XT1-K2, K2M		0.50				1.00		≦0.35			
E8XT5-K2, K2M		~1.75				~2.00		⊒0.00			
E9XT5-K2, K2M							<0.1E		< 0.0E		
E10XT1-K3, K3M							≦0.15		≦0.05		
E11XT1-K3, K3M	≦0.15					1.25		0.25		-	
E10XT5-K3, K3M						~2.60		~0.65			
E11XT5-K3, K3M		0.75 ~2.25									
E11XT1-K4, K4M			≤0.03	≦0.03	≦0.80	1.75 ~2.60	0.20 ~0.60				-
E11XT5-K4, K4M								0.20 ~0.65	≦0.03		
E12XT5-K4, K4M											
E12XT1-K5, K5M	0.10 ~0.25	0.60 ~1.60				0.75 ~2.00	0.20 ~0.70	0.15 ~0.55			
E6XT8-K6									-0.05		
E7XT8-K6		0.05 ~1.50				0.40 ~1.00	≦0.20	≦0.15	≦0.05	≦1.8	
E7XT5-K6, K6M	≦0.15										
E10XT1-K7, K7M		1.00 ~1.75				2.00 ~2.75	-	-	-	-	
E9XT8-K8		1.00 ~2.00			≦0.40	0.50 ~1.50	-0.00	≦0.20	-0.05	≦1.8	
E10XT1-K9, K9M	≦0.07	0.50 ~1.50	≦0.015	≦0.015	≦0.60	1.30 ~3.75	≦0.20	≦0.50	≦0.05		≦0.06
E8XT1-W2, W2M	≦0.12	0.50 ~1.30	< 0.00	< 0.00	0.35 ~0.80	0.40 ~0.80	0.45 ~0.70	-	-	-	0.30 ~0.75
EXXTX-G	-	≧0.75 ^₀	≦0.03	≦0.03		≧0.50 ^₀	≧0.30	≧0.20 ^₀	≧0.10 [∞]	≧1.8 ^₀	-

Notes a) Al is specified for self-shielded electrodes only.

b) In order to meet the alloy requirements of the G group, the undiluted weld metal shall have the minimum of at least one of the elements marked * in this table.

AWS	Chemica	al composition for weld	metal %
Classification	Tensile Strength ksi	Yield strength at 0.2%offset ksi	Elongation %
E6XTX-X, -XM	60~80	≧50	≧22
E7XTX-X, -XM	70~90	≧58	≧20
E8XTX-X, -XM	80~100	≧68	≧19
E9XTX-X, -XM	90~110	≧78	≧17
E10XTX-X, -XM	100~120	≧88	≧16
E10XTX-K9, -K9M	a)	82~97	≧18
E11XTX-X, -XM	110~130	≧98	≧15
E12XTX-X, -XM	120~140	≧108	≧14
EXXXTX-G EXXXTG-X EXXTG-G	As agreed	to between purchaser a	nd supplier.

2. Mechanical properties for weld metal

3. Shielding, polarity

AWS Classification	External shielding	Polarity	Application
EX0T1-X	CO2		
EX0T1-XM	75~80%Ar+CO₂		
EX1T1-X	CO2		
EX1T1-XM	75~80%Ar+CO₂	DCEP	
EX0T4-X	None		
EX0T5-X	CO2		
EX0T5-XM	75~80%Ar+CO₂		
EX1T5-X	CO2		
EX1T5-XM	75~80%Ar+CO₂	DCEP/DCEN	М
EX0T6-X		DCEP	IVI
EX0T7-X			
EX1T7-X	None	DCEN	
EX0T8-X		DOLIN	
EX1T8-X			
EXXT1-K9	CO2	DCEP	
EXXT1-K9M	75~80%Ar+CO₂		
EX0T11-X	None	DOEN	
EX1T11-X	None	DCEN	
EX0TG-X	_	Not opposition	_
EX1TG-X	_	Not specified	_

AWS SPECIFICATION FOR WELDING CONSUMABLES

4. Impact requirements and preheat, Interpass and PWHT temperatures

AWS Classification	Charpy V-notch impact test Temp.°F	Preheat and interpass Temperature °F	Postweld Heat treatmer Temperature °F		
C-Mo steel electrodes	Temp, T				
E7XT5-A1,-A1M	-20				
E8XT1-A2,-A1M	-	300 ± 25	1150 ± 25		
Cr-Mo steel electrodes		1			
E8XT1-B1,-B1M	-				
E8XT1-B1L,-B1LM	-				
E8XT2-B2,-B2M	-				
E8XT5-B2,-B2M	-				
E8XT2-B2L,-B2LM	-				
E8XT5-B2L,-B2LM	-	000 + 05	4075 + 05		
E8XT1-B2H,-B2HM	-	300 ± 25	1275 ± 25		
E9XT1-B3,-B3M	-				
E9XT5-B3,-B3M	-				
E10XT1-B3,-B3M	-				
E9XT1-B3L,-B3LM	-				
E9XT1-B3H,-B3HM	-				
E8XT5-B6,-B6M	-				
E8XT5-B6L,-B6LM	-	400 + 100			
E8XT5-B8,-B8M	-	400±100	1375±25 ^a		
E8XT5-B8L,-B8LM	-				
Ni steel electrodes			·		
E7XT8-Ni1	-20				
E7XT6-Ni1	-20		1150 ± 25		
E6XT1-Ni1-Ni1M	-20		1150 ± 25		
E8XT1-Ni1-Ni1M	-20				
E8XT5-Ni1-Ni1M	-60				
E8XT1-Ni2-Ni2M	-40				
E8XT5-Ni2-Ni2M	-75	300 ± 25			
E9XT1-Ni2-Ni2M	-40				
E7XT8-Ni2	-20				
E8XT8-Ni2	-20				
E8XT5-Ni3-Ni3M	-100		1150 ± 05		
E9XT5-Ni3-Ni3M	-100]	1150 ± 25		
E8XT11-Ni3	0				

AWS Classification	Charpy V-notch impact test Temp.°F	Preheat and interpass Temperature °F	Postweld Heat treatment Temperature °F
Mn-Mo steel electrodes			
E9XT1-D1,-D1M	-40		-
E9XT5-D2,-D2M	-60	300 ± 25	1150 + 05
E10XT5-D2,-D2M	-40	300±25	1150 ± 25
E9XT1-D3,-D3M	-20		-
Other low-allouy steel electr	odes		
E8XT5-K1,-K1M	-40		
E7XT4-K2	0		
E7XT7-K2	-20		
E7XT8-K2	-20		
E7XT11-K2	+32		
E8XT1-K2	-20		
E9XT1-K2	0		
E8XT5-K2,-K2M	-20		
E9XT5-K2,-K2M	-60		
E10XT1-K3,-K3M	0		
E11XT1-K3,-K3M	0		
E10XT5-K3,-K3M	-60	300 ± 25	
E11XT5-K3,-K3M	-60	- 300±25	-
E11XT1-K4,-K4M	0		
E11XT5-K4,-K4M	-60		
E12XT5-K4,-K4M	-60		
E12XT1-K5,-K5M	-		
E6XT8-K6	-20		
E7XT8-K6	-20	1	
E7XT5-K6,-K6M	-75]	
E10XT1-K2,-K7M	-60	1	
E9XT8-K8	-20	1	
E10XT1-K9,-K9M	-60	1	
E8XT-W2,-W2M	-20	1	
EXXTX-G	-]	

Notes 1. Absorbed energy for Charpy V-notch impact test shall be above 20ft-lb

Remarks a : Hold at specified temperature for two hours.

A p p e

d

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A1-92	All-Weights	WT-312
A2-90(1997)	All Classes	WT-91B3, WT-312
A3-87(1995)	Grade 1 & 2 Grade 3	WT-71, WT-70, WT-71LF WT-91K2
A27-95	All	WT-70, WT-71LF, WT-71
A36-97a		WT-70, WT-71LF, WT-71 WT-71T11
A53-99b		WT-70, WT-71LF, WT-71
A67-82	Grade 1 Grade 2	WT-91, WT-81W
A74-98		WT-70, WT-71LF, WT-71
A82-97a		WT-70, WT-71LF, WT-71
A105-98		WT-70, WT-71LF, WT-71
A106-99	Grade A, B, C	WT-70, WT-71LF, WT-71
A108-99	1008-1020 1022-1215	WT-70, WT-71LF, WT-71
A109-98a	All	WT-70, WT-71LF, WT-71
A123-97a		WT-71GS
A126-95		WT-312
A128-93(1998)		WT-312
A131-94	A thru DS A, B, D, DS ,AH32, AH36 DH32, DH36, EH32, EH36	WT-70, WT-71LF, WT-71 WT-81K2
A134-96		WT-70, WT-71LF, WT-71
A135-97c	A & BAII	WT-70, WT-71LF, WT-71
A139-96	All	WT-70, WT-71LF, WT-71
A148-93b(1998)	80-40, 80-50 90-60 105-85 115-95	WT-91 WT-91, WT-91K2 WT-91K2 WT-115
A167-99	301, 302, 302B, 304, 305, 308 304L 309, 309S 309Cb 310, 310S 316, 316L 317, 317L 321, 347, 348 XM-15	WT-308L WT-309L WT-316L WT-317L WT-347
A176-99	430, 420, 422, 431, 442, 446	WT-410, WT-410NiMo, WT-309L
A178-95	A, C, D	WT-70, WT-71LF, WT-71
A179-90a(1996)		WT-70, WT-71LF, WT-71 WT-71T11
A181-95b	60 & 70	WT-70, WT-71LF, WT-71 WT-71T11
A182-98a	F1 F5 F5 F9 F9 F9 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2 F2	WT-8161 WT-309L WT-8182 WT-9183 WT-410, WT-410NiMo

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A182-98a	F429, F430 F304, F304H, F304 F304H, F304H F309, F300H F300, F310H F310, F310H, F316N F316L, F316L, F316N F317L F317L F317L F317L F317, F321H, F347, F347H, F348, F348H F344, F47, F48, F49, F58	WT-308L
	F316L, F316LN F317 F317L F317L F317L F317L F321L F321L F321L F321H, F347, F347H, F348,	WT-316L WT-316L WT-317L WT-347
A192-91(1996)	F44, F47, F48, F49, F58	WT-70 WT-71 E WT-71
		WT-70, WT-71LF, WT-71 WT-81A1
A193-99	B5 B6, B6X B7, B7M B16 B8, B8A, B8N, B8NA, B8P, B8PA B8C, B8CA, B8T, B8TA	WT-309L WT-410 WT-81B2 WT-91B3 WT-347
4000 00(4000)	B6, B6X B7, B7M B16 B8, B8A, B8N, B8NA, B8P, B8PA B8C, B8CA, B8T, B8TA B8M, B8M, B8M, B8M, B8M, B8M, B8M, B8M,	WT-308L WT-316L
A202-93(1998)	В	WT-81B2 WT-91B3
A203-97	A, B D, E, F	WT-80 WT-80
A204-93(1998)	A, B C	WT-81A1
A209-88		WT-81A1
A210-96		WT-71
A213-99a	T2, T11, T12, T17 T3, T3b, T5c T7, T9 T21 T20 TP201, TP202, TP304, TP304H, TP304N, TP304L, TP304LN TP3095, TP309H, TP309HCb, TP310Cb, TP310H, TP310HCb, TP310Cb, TP310H, TP310HCb, TP310HCbN, TP310E TP316, TP316L TP316, TP316L TP317, TP317L TP3211, TP321H, TP347, TP347H, TP347LN, TP347FGH, TP348, TP348H	WT-85B2, WT-81B2 WT-309L WT-91B3 WT-91B3 WT-308L WT-316L WT-317L WT-347
A214-96		WT-70, WT-71LF WT-71
A216-93(1998)	WCA WCB WCC	WT-70, WT-71LF WT-71 WT-81A1
A217-99	WC1 WC4, WC5, WC6, WC11 WC9 C5 C12, C12A CA15	WT-81A1 WT-85B2, WT-81B2 WT-91B3 WT-309L WT-410
A220-99	All	
A225-93(1998)	Grade C Grade D	WT-111K3, WT-115

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A234–99	WPB, WPC WP1 WP11, WP12 WP22 WP9, WP91, WP911 WPR	WT-71LF, WT-71 WT-81A1 WT-85B2, WT-81B2 WT-91B3 WT-309L WT-81W
A225–93(1998)	WPH 201, 202, 302, 304, 305 309Cb 310Cb 316 316L 317 317 317 317 317 317 317 317 317 317	WT-309L WT-309L WT-316L WT-316L WT-317L WT-317L WT-317L WT-347 WT-410
A242-98	100	WT-71W, WT-81W
A225-93(1998)	210, 202, 304, 305, 304H 304N 304L, 304LN 309Cb, 309H, 309HCb, 309S 310Cb, 310H, 310HCb, 310S 316, 316H, 316N 316L, 316LN 317, 317L 321, 347, 348, 321H, 347H 348H	WT-308L WT-308L WT-309L WT-316L WT-316L WT-317L WT-347
A250-95	T1, T1a, T1b T2 T-11, T-12 T-22	WT-81A1 WT-81B2, WT-85B2 WT-91B3
A252-98	All	WT-70 WT-71LF, WT-71 WT-71T11
A266-96	1 2,3,4	WT-70 WT-71LF, WT-71 WT-71T11 WT-91
A268-96	TP405, TP410 TP429, TP430, TP430Ti, TP439	WT-410
A269-98	304 304L, 304N 316 316L, 316N 317 321, 347, 348	WT-308L WT-316L WT-316L WT-317L WT-317L WT-347
A270-98a	TP304 TP304L TP316 TP316L	WT-308L WT-316L WT-316L
A276-98b	201, 202, 302, 304, 308 304L, 305 309 309Cb 310Cb 316L 316L 317 321, 347, 348 403, 405, 410, 414, 421 430	WT-308L WT-316L WT-316L WT-317L WT-317L WT-410 WT-410 WT-309L

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A278-93	All	
A283-98	Grade A, B, C	WT-70, WT-71LF WT-71T11
	Grade D	WT-70, WT-71LF WT-71111 WT-70, WT-71LF WT-71111
A285-90(1996)	Grade A, B, C	WT-70, WT-71LF WT-71T11
A288-91(1998)	1	WT-70, WT-71LF WT-71T11
	2 3 4 5, 6, 7, 8	WT-115, WT-111K3 WT-111K3
A290-95	A, B	WT-70, WT-71LF, WT-71
	<u>C, D</u>	WT-81B2
	C, D E, F G, H I, J K, L	WT-111K3
A291-95	1, 3 2, 3 4, 6, 7	WT-91
	2, 3	WT-91 WT-80 WT-111K3
	5, 6, 7	WT-80
A297-97(1998)	HF HH	WT-308L WT-309L
	HI, HK HE, HD	WT-312
A299-97		
		WT-71LF, WT-71 WT-81B2
A302-97	A B C & D	WT-81A1 WT-91 WT-91
A307-97	A	WT-70, WT-71LF, WT-71
A311-95	1018, 1117	WT-70, WT-71LF, WT-71
	All Others	
A312-99	TP304, 304N, 304H TP304L, 304LN	WT-308L
	TP309Cb	
	TP309S, 309H TP310Cb	WT-309L
	TP316, 316H, 316N TP316L 316LN	WT-316L WT-316I
	TP317	WT-317L
	TP316, 316H, 316N TP316L, 316LN TP317L TP317L TP321, 347, 348, 321H, 347H	WT-316L WT-316L WT-317L WT-317L WT-347
A314-97	202 302 302B 303 304	
	305, 308 309, 309S 309Cb	
	309Cb 310 3105 314	
	310, 310S, 314 316	WT-316L
	316L 317	WT-316L WT-316L WT-317L WT-347
	321, 347, 348 429 430 431	WT-347
	403, 410, 414, 416, 416SE, 420	WT-309L, WT-410
	321, 347, 348 429, 430, 431 403, 410, 414, 416, 416SE, 420 440A, 440B, 440C 501, 502	WT-309L, WT-410 WT-309L WT-309L
A321-90(1995)		WT-115
A325-97	Type I Type II	WT-71LF, WT-71 WT-111K3, WT-115
A328-98	Plates,Bars,Shapes	WT-71LF, WT-71 WT-71T11
		WI-/1T11

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A333-99	1 & 6 3 & 7 4 8	WT-70, WT-71, WT-71LF WT-80 WT-81K2, WT-81
A334–99	1 & 6 3 & 7 8	WT-70, WT-71, WT-71LF WT-80
A335–99	P1 & P15 P2, P11, P12 P5, P5b, P5c P9, P91, P92 P21, P22	WT-81A1 WT-85B2, WT-81B2 WT-309L WT-91B3
A336-99	F1 F5, F5A F6	WT-81A1 WT-309L WT-309L
	F21, F22 F11, F12 F304, 304H, 304N F304L, 304LN	WT-91B3 WT-85B2, WT-81B2 WT-308L
	F9 F21, F22 F11, F12 F304, 304H, 304N F304L, 304LN F309H F310 F316, F316H F316, F316H F316L F321, 347, 348	WT-309L WT-316L WT-316L WT-347
A350-99	LF1, JF2, LF6 LF5	WT-91 WT-81K2
A336-99	CF8, CF8A, CF8C, CF10 CF3, CF3A CH8, CH10, CH20 CF-8M, CF10M CK20, HK30, HK40	WT-308L WT-309L WT-309L WT-316L
A352-93(1998)	LCA, LCB LCC LC1 LC2 LC2 LC2 LC2-1 CA6NM	WT-81A1 WT-115, WT-111K3 WT-410NiMo
A353-93(1998)		WT-309L
A356-98	Grade 1 Grade 2 Grade 5, 6, 8, 9 Grade 10 Grade12	WT-70, WT-71 WT-81A1 WT-85B2, WT-81B2 WT-91B3
A358–98	CA6NM 304, 304N, 304H 304J, 304LN 309, 309Cb 310 310Cb	WT-410NiMo WT-308L WT-309L
	316, 316N, 316H 316L, 316LN 321, 347, 348	WT-316L WT-316L WT-347
A361-85		WT-71 GS
A366-97		WT-70, WT-71LF, WT-71
A369-92	FPA, FPB, FP1 FP2, FP11, FP12 FP21, FP22 FP5, FP7, FP9	WT-70, WT-71LF, WT-71 WT-81A1 WT-85B2, WT-81B2 WT-91B3 WT-309L
A372-99	A B C, E, F, G, H, J D, K L, J Class 110	WT-71LF, WT-70, WT-71 WT-81A1, WT-91 WT-115, WT-111K3, WT-91 WT-115

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A376-98	TP304, TP304N, TP304H TP304LN TP316, TP316N, TP316H TP316LN TP321, TP321H, TP347 TP347H, TP348	WT-308L WT-316L WT-316L WT-347
A377-95		
A381-96	Y35 thru Y50 Y52 thru Y60 Y65	WT-70, WT-71LF, WT-71, WT-70, WT-71LF, WT-71 WT-91
A387-99	Grade 2, 12, 11 Grade 22(L), 21(L) Grade 5, 7, 9, 91, 911	WT-85B2, WT-81B2 WT-91B3
A389-93(1998)	C-23 C-24	WT-85B2, WT-81B2 WT-91B3
A391-98	All	WT-111K3
A403-99	WP/CR 304, 304N, 304H WP/CR 304L, 304LN WP/CR 316, 316N, 316H WP/CR 316, 316LN WP/CR 317 WP/CR 317L WP/CR 317L WP/CR 317L WP/CR 321, 347, 348 321H, 347H	WT-308L WT-309L WT-316L WT-316L WT-317L WT-317L WT-317L WT-347
A409-95a	7 2304 T 2304 T 23095 T 23095 T 23095 T 23105 T 231	WT-308L WT-316L WT-316L WT-316L WT-317L WT-317L WT-347
A414-98	Grade A, B, C Grade D, E, F, G	
A420-96a	WPL6	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71
1420 Jou	WPL9 WPL3 WPL8	WT-91 WT-80
A423-95	Grade 1 Grade 2	WT-85B2, WT-81B2, WT-81W WT-91
A424-97		WT-71LF, WT-71
A426-92(1997)	CP1, CP15 CP2, CP11, CP12 CP5, CP5b, CP21 CP7, CP9 CP22	WT-81A1 WT-81B2, WT-85B2 WT-309L WT-309L WT-91B3
A447-93(1998)		WT-309L
A451-93(1997)	CPF3, CPF3A CPF8, CPF8A CPF3M CPF8M CPF10MC CPF8C CPF8C CPH8, CPH20, CPH10 CPK20	WT-308L WT-316L WT-316L WT-347 WT-309L
A455-90(1996)		WT-70, WT-71LF, WT-71
A463-99a		WT-71GS
A469-94a	Class 1 Class 2 Class 3 Class 4 Class 5, 6, 7	WT-91 WT-81B2 WT-111K3 WT-111K3, WT-115

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A470-98	2 3 & 5 4, 6, 7, 8, 9	WT-91 WT-91K2 WT-111K3, WT-115
A471-94	10	WT-111K3, WT-115
A473-99	201, 202, 205, 302, 302B, 304 305, 308 303 304 309, 309S 310, 310S, 314 316 316 317, 347, 348 403, 405, 410, 410S, 414 416, 420 429, 430, 431 440A, 440B, 440C 501, 501A, 501B, 502	WT-308L, WT-312 WT-308L WT-309L WT-316L WT-316L WT-317L WT-347 WT-410 WT-312
A476-90(1997)		
A478–97	302, 304, 305 304L 309Cb 310Cb 316 316L 317	WT-308L WT-316L WT-316L WT-317L
A479-99	302, 304, 304H, 304N 304L, 304LN 309S 309Cb 310Cb 316C, 316N 316L, 316LN 321, 321H, 347, 348 403, 410, 414, 405 430	WT-308L WT-309L WT-316L WT-316L WT-347 WT-410
A478-93(1998)	11A, 12A, 16A 1A, 1B, 1C, 2A, 2B, 2C, 4A, 4C, 8A, 9A, 9C, 13A 4B, 4D, 4E, 8B, 8C, 9B 9D, 10A, 11B, 12B, 13B 6A, 6B, 7A, 14A, 10B	WT-91 WT-91K2
A493-95	302, 304, 305 316 384 429, 430 410, 431 440C	WT-308L WT-316L WT-308L WT-410 WT-312
A494-99	M-35-1, M-25S	
A496-97a		WT-70, WT-71LF, WT-71
A497-97		WT-70, WT-71LF, WT-71
A499-89(1997)	Grade 50 Grade 60	WT-70, WT-71LF, WT-71 WT-91K2
A500-99	All	WT-70, WT-71LF, WT-71 WT-71T11
A501-99	All	WT-70, WT-71LF, WT-71 WT-71T11
A508-95	1, 1A, 2Class 1, 3Class 1 2Class 2, 3Class2, 4N Class 3 4N Class 1, 5, Class1 4N Class 2, 5, Class2 22	WT-91K2 WT-115, WT-111K3 WT-91B3

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A511-96	MT302, MT304, MT305 MT304L MT309S MT310S MT316 MT316 MT317, MT347 MT403, MT410, MT414, MT416SE MT431 MT440A MT40A MT400, MT430 MT440-1, MT430 MT446-1	WT-308L WT-316L WT-317L WT-317L WT-410 WT-410 WT-410NiMo WT-309L
A512-96	All except 1110, 1115, 1117	WT-70, WT-71LF, WT-71
A513-98	1008 thru 1015 1016 thru 1035	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71
A514-94a	All	WT-115, WT-111K3, WT-91K2
A515-92(1997)	All	WT-70, WT-71LF, WT-71
A516-90(1996)	All	WT-70, WT-71LF, WT-71
A517-93(1998)	All	WT-115, WT-111K3, WT-91K2
A512-96	CA, CC, CC1 CE, CF, AA, AB AC, AD, CF1, CG AE AF	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71 WT-70 WT-91 WT-115, WT-111K3
A522-956	All	
A523-96	A&B	WT-70, WT-71LF, WT-71
A524-96	1811	WT-70, WT-71LF, WT-71
A529-96		WT-70, WT-71LF, WT-71
A533-93(1998)	Type A1 Type B1, B2, C1, C2, D1, D2, Type A3, B3, C3, D3	WT-81A1 WT-91K2, WT-91
A537-95	Class 1 Class 2, 3	WT-70, WT-71LF, WT-71 WT-91
A539-99		WT-71LF, WT-71 WT-71T11, WT-71GS
A541-95	1, 1A 12, 2 Class 1, 3 Class 1 3V, 22 Class 2, 3 Class 2, 4N Class 3 4N Class 1, 5 Class 1, 22 Class 4 4N Class 2, 5 Class 2, 22 Class 5 11 Class 4 32 Class 4 33 Class 4 34 Class 1, 22 Class 5 35 Class 2, 35 Class 2, 35 Class 5 35 Class 2, 35 Class 2, 35 Class 5 36 Class 1, 35 Class 2, 35 Class 5 37 Class 1, 35 Class	WT-70, WT-71LF, WT-71 WT-91 WT-91B3 WT-111K3, WT-115 WT-81B2
A542-99	1A, 1B, 3A, 3B, 4A, 4B, 4Aa, 4Ab 2A, 2B	WT-91B3 WT-91B3
A543-93(1998)	1B, 1C, 3B, 3C 2B, 2C	WT-115, WT-111K3 WT-111K3
A553-95	Туре 1	
A554-98	Same as A511–96 except for following. MT–301 MT–309S–Cb	WT-308L
A556-96	A2 B2, C2	WT-71LF, WT-71 WT-71T11, WT-71GS WT-71LF, WT-71 WT-71T11, WT-71GS
A562-90(1996)		WT-70, WT-71LF, WT-71 WT-71T11, WT-71GS

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A568–98 A569–98 A570–98	All	WT-70, WT-71LF, WT-71 WT-71T11, WT-71GS
A572-99a	42, 50, 55, 60 65	WT-70, WT-71LF, WT-71 WT-91
A573-93a(1998)	58, 65 70	WT-91
A575-96	M1008 thru M1025 M1031 & M1044	WT-70, WT-71LF, WT-71 WT-91
A576-90b(1995)	1008 thru 1029 1030 thru 1040 1042 thru 1055 1060 1070, 1078	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71 WT-91 WT-115, WT-111K3
A581-95b A582-95b	303, 303SE 416, 416SE 430, 430F	WT-308L WT-312, WT-410
A587-96		WT-71LF, WT-71, WT-70
A588-97a	All	WT-81W
A589-96	A & B	WT-70, WT-71LF, WT-71
A591-98		WT-71GS, WT-71T11
A592-89(1994)	A, E, F	WT-115, WT-111K3
A595-98	A, B, C	WT-71LF, WT-71, WT-70
A602-94(1998)	All	WT-71LF, WT-71, WT-70
A606-98	All	WT-81W
A607-98	45, 50 55, 60 65, 70	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71 WT-91
A608-91a(1998)	HC30, HD50 HE35 HF30 HH30, HH33, HI35 HK30, HK40, HL30, HL40 HW50 HX50	WT-312 WT-347 WT-309L
A611-97 if copper is specified, use	A, B, C, D E All Grades	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71 WT-71W, WT-81W
A612-98		WT-91
A615-96a	40 60 75	WT-70, WT-71LF, WT-71 WT-91K2, WT-91 WT-111K3, WT-115
A616-96a	50 60	WT-70, WT-71LF, WT-71 WT-91K2
A617-96a	40 60	WT-70, WT-71LF, WT-71 WT-91K2, WT-91
A618-99	All	WT-70, WT-71LF, WT-71
A620-97 A622-97		WT-70, WT-71LF, WT-71 WT-71T11, WT-71GS
A633-95	A, C, D E	WT-91
A635-98	1006 thru 1023	WT-70, WT-71LF, WT-71
A649-98a	2, 4, 51 1A2 3	WT-70, WT-71LF, WT-71 WT-85B2, WT-81B2 WT-91K2
A656-98	1B2 50, 60 70 80	WT-91K2 WT-70, WT-71LF, WT-71 WT-91 WT-91K2, WT-91

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A659-97	All	WT-70, WT-71LF, WT-71
A660-96	All	WT-70, WT-71LF, WT-71
A662-99	A & B C	WT-70, WT-71LF, WT-71 WT-91
A663-89(1994)	45, 50, 55, 60, 65 70, 75, 80	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71
A666-99	201, 202, 205, 301, 302, 304, 304N 201L, 301LN, 301L, 301LN, 304L, 304LN 316, 316N 316L	WT-308L WT-316L WT-316L
A668-96	A, AH, B, BH, C, CH, D, DH E, EH, G, GH F, FH, H, HH J, JH, K, KH L, LH M, JH, N, NH	WT-70, WT-71LF, WT-71 WT-91 WT-91B3 WT-111K3, WT-115
A668-96	CA55, CB60, CB65, CB70, CC60, CC65, CC70, CD70, CE55 CD80, CE60, CF65, CF70 CF66, CF71 CJ101 thru CJ113 CK75	WT-70, WT-71LF, WT-71 WT-91 WT-80 WT-115 WT-81A1 or WT-81B2, WT-85B2
A672-96	A45, A50, A55, B55, B60, B65 B70, C55, C60, C65, C70, D70 D80, E55, E60 H75, H80 J80, J90, J100 K75, K85, L65, 670, L75, M70 M75, N75	WT-70, WT-71LF, WT-71 WT-81A1 or WT-81B2, WT-85B2 WT-81A1 WT-81B2, WT-85B2
A675-90(1995)	45, 50, 55, 60, 65, 70 75, 80, 90	WT-70, WT-71LF, WT-71 WT-91K2, WT-91
A678-94a	A B C, D	WT-70, WT-71LF, WT-71 WT-81W WT-115
A688-98	TP304 TP304L, TP304LN TP316 TP316L, TP316LN TPXM-29	WT-308L WT-316L WT-316L
A690-94	All	WT-71W, WT-81W
A691-98	CM-65, CM-70, CM-75 CMSH-70, CMSH-75 CMSH-80 1/2CR, 1CR, 1 · 1/4CR 2 · 1/4CR	WT-81A1 WT-91 WT-81B2, WT-85B2 WT-91B3
A690-94	All	WT-70, WT-71LF, WT-71
A695-90b(1995)	A, B, C, D Grade 35 & 40 A, C, D Grade 45 & 50	WT-70, WT-71LF, WT-71 WT-91
A696-90a(1995)	B C	WT-70, WT-71LF, WT-71 WT-70, WT-71LF, WT-71
A704-96	40 60	WT-70, WT-71LF, WT-71 WT-91K2, WT-91
A706-98	60	WT-91
A707-98	L1, L2, L3 L4 L5 L6	WT-91 WT-81K2
A709-97b	36, 50 50W, 70W, HPS 70W 100, 100W	WT-70, WT-71LF, WT-71, WT-71W, WT-71T11 WT-81W, WT-91K2 WT-115, WT-111K3

ASTM DESIGNATION	CLASS OR GRADE	Brand Name
A710-95	A1 A2	WT-91K2 WT-70, WT-71LF, WT-71
A714-99	All	WT-81W
A715-98	50,60 70,80	WT-70, WT-71LF, WT-71 WT-91K2
A724-99	All	WT-115
A727-97		WT-81A1
A730-93	A & B	WT-70, WT-71LF, WT-71
A734-87a(1997)	A B	WT-91
A735-99	1, 2 3, 4	WT-80CG
A737–99	BC	WT-91 WT-91K2
A738–90(1996)	A B&C	WT-91, WT-81W WT-91, WT-81W
A739-90a(1995)	B11 B22	WT-85B2, WT-81B2 WT-91B3
A744-98a	CF-8 CF-8M CF-8c CF-3 CF-3M	WT-316L WT-347 WT-308L WT-316L
A757–90(1996)	A1Q, A2Q B2N, B2Q D1N1, D1N2, D1N3, D1Q1 D1Q2, D1Q3 E1Q, E2N, E3N	WT-70, WT-71LF, WT-71 WT-91B3 WT-111K3
A758-98	All	WT-70, WT-71LF, WT-71
A759-85(1992)		WT-70, WT-71LF, WT-71
A765–98a	I II III IV	WT-91 WT-91 WT-80 WT-81K2
A769-94	36, 40, 45, 50, 60 45W, 50W 80	WT-70, WT-71LF, WT-71 WT-71W, WT-81W WT-91
A771–95	TP316	WT-316L
A774–98 & A778–98	TP304L TP316L TP317L TP321, TP347	WT-308L WT-316L WT-317L WT-347
A782-90(1996)	1 2 3	WT-85B2, WT-81B2 WT-90TB3, WT-91B3
A787-96	All	WT-70, WT-71LF, WT-71
A792–99	All	WT-71GS
A793–96	304 304L 316 316L	WT-308L WT-316L WT-316L
A795–97	A & B (if Galvanized)	WT-70, WT-71LF, WT-71 WT-71GS
A792-99	All	
A841-98	A, B & C	WT-70, WT-71LF, WT-81K2
A852-97		WT-81W
A871-97	50 60	WT-71W WT-81W

1. Welding Techniques

Welding with out products requires a minimum of training. Both stringer and weave techniques are used with WT. The stringer or straight progression weld is usually preferred for thin plate(3/8" and less), since the faster travel speed lowers the heat input and the chance of distortion. The weave technique is more satisfactory for large single pass welds. Two methods of weaving in the vertical position are illustrated in Figure 1.

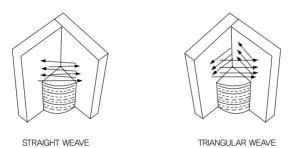
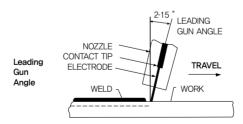
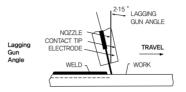



Figure 1


A leading angle is when the welding gun is tilted in the direction of travel. The top section of the gun is 2° to 15° in advance of the point of welding. The gas shield is then directed into the molten pool.

A portion of the arc is insulated from the base metal by the molten pool when a leading gun angle is used.

Leading gun angles are usually desirable in the flat and horizontal positions.

A lagging angle is when the welding gun is tilted away from the direction of travel. The top section of the gun is 2° to 15° behind the point of welding. The gas shield is then directed ahead of the molten pool. A lagging angle is usually preferred for vertical–up welding.

The arc stream plays ahead on a cold base metal when a lagging gun angle is used, reducing the intensity of the heat on the work. This lowers the penetration and helps to prevent burn-thru on thin gauge metals.

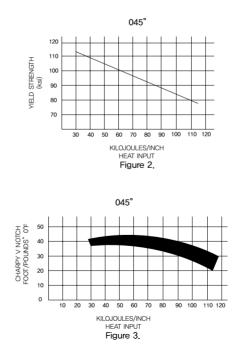
Shielding Gas

Out products are designed for use with straight CO₂ or a mixture of argon and CO₂. Arc characteristics, bead shape, weld deposit chemistry, and mechanical properties can be altered by the choice of shielding gas.

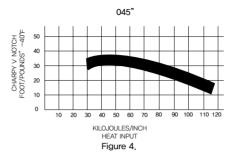
Argon atom are easily ionized at the arc, resulting in a highly charged direct path between the electrode and the work piece. The concentration of energy at the arc helps constrict the droplets size of the weld metal, shifting the transfer within the spray mode. A smooth stable arc with a minimum of spatter is the result when the percentage of argon is increased. A common mixture that produces balanced results is 75% Argon and 25% CO₂.

The addition of CO_2 increases the penetration and the most penetration will occur when 100% CO_2 is used. But, as the percentage of CO_2 rises, the arc characteristics become harsher and the spatter levels increase.

Another consideration with carbon dioxide is its activity in the heat of the arc. It will break down into oxygen and carbon monoxide both of which will attract and oxidize certain alloys, such as silicon and manganese, preventing their total transfer into the weld metal.


Some of products are designed for use with 100% CO₂ and the silicon and manganese levels are adjusted to compensate for this oxidation. Argon does not hinder this transfer of alloys, and the use of an Argon/CO₂ mixture will alter the expected chemistry of the weld metal for electrodes designed for 100% CO₂ shielding.

Heat Input


The amount of heat energy locally transferred into the weld puddle at the arc is known as heat input. Heat input is function of the combined effects of amperage, voltage and travel speed and is expressed in joules or kilojules per inch of weld. It can be calculated with the following formula.

HEAT INPUT	_	Amps X Volts X 60
(Joules/Inch of Weld)	_	Travel Speed(in/min.)

Heat input influences the cooling rate, and it is the cooling rate which significantly alters the mechanical properties for the weld metal and the heat affected zone. The properties most sensitive to adjustments in heat input are weld metal toughness and yield strength as indicated in the Figures 2, 3 and 4.

A p e n d i x

Trouble-Shooting

Consistently good welds throughout a wide range of welding conditions are easily obtained when the carriables that affect the flux cored process are understood and controlled. Each variable listed below is important in obtaining a balanced welding condition.

Welding Voltage Welding Current Welding Travel Rate Welding Gun Angle Contact Tip to Work Distance

When any of these variables is out of adjustment, certain problems may arise. To obtain the best results in correcting these problems, the following suggestions are made :

- 1. Electrode stubs on work.
 - a. Voltage too low
 - b. Wire feed too fast.
 - c. Poor ground.
- 2. Arc burn back to contact tip.
 - a. Volage too high.
 - b. Wire feed speed too low.
 - c. Loose or worn feed rolls.
 - d. Kinked or clogged welding conduit.
- 3. Rough arc or heavy spatter.
 - a. Improper volt or amps.
 - b. Loose or worn contact tip.
 - c. Arc blow.
 - d. Gun pointing in wrong direction or too much angle in relation to the weld.
 - e. Nozzle too far from the work.

- 4. Erratic wire feed.
 - a. Worn or loose contact tip.
 - b. Worn feed rolls.
 - c. Clogged welding conduit.
 - d. Fluctuation of line voltage.
 - e. Faulty relay or contactor in control.
- 6. Weld is undercut.
 - a. Voltage too high.
 - b. Excessive amperage for plate thickness.
 - c. Excessive travel speed.
 - d. Wrong gun angle.
- 8. Weld metal cracks.
 - a. Wrong electrode for base metal.
 - b. Preheat required and not being used.
 - c. Stress cracks due to improper procedure.
 Welds should be welded from center out or toward an open end.
 - d. Too much heat input(quenched and tempered steels).
 - The chemistry of the base metal is incorrect or out of specification.
- 9. Poor bead appearance.
 - a. Excessive current.
 - b. Travel speed too slow.
 - c. Too much gas.
 - d. Poor gas coverage.

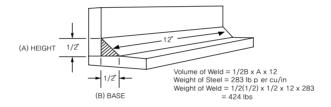
2. CALCULATING FILLER METAL CONSUMPTION

The number of pounds of welding electrodes or welding wire necessary to complete a given weld joint may be calculated by the formula :

$$P = \frac{WL}{E}$$

Where:

- P = Pounds of electrode or wire required
- W = Weight per foot of weld metal
- L = Length of weld (feet)
- E = Deposition efficiency


- 5. Weld bead is not uniform.
 - a. Wrong volt/amperage setting.
 - b. Inconsistent travel speed.
 - c. Operator varying nozzle to work distance.
- 7. Weld metal porosity.
 - a. Insufficient gas flow.
 - b. Moisture in gas.
 - c. Loss of gas due to wind or air currents.
 - d. Excessive gas causing turbulence.
 - e. Nozzle held too far from work surface.
 - f. Contaminant on surface of plate.
 - g. Wrong volt/amperage setting.

WEIGHT PER FOOT OF WELD METAL

Calculating the weight of weld metal requires that we consider the following items

- 1. Area of the cross-section of the weld.
- 2. Length of the weld.
- 3. Volume of the weld in cubic inches.
- 4. Weight of the weld metal per cubic inch.

In the fillet weld shown below, the area of the cross-section(the triangle) is equal to one half the base times the height, the volume of the weld is equal to the area times the length, and the weight of the weld then, is the volume times the weight of the material (steel) per cubic inch.

CALCULATING THE WEIGHT PER FOOT OF A FILLET WELD

This example is for a fillet weld with no reinforcement. Similar calculations can be made for butt or lap joint.

DEPOSITION EFFICIENCY

The deposition efficiency of an electrode or welding wire indicates the portion of that product you can expect to be deposited as weld metal. Losses due to slag, spatter, fume and in the case of semi automatic or automatic

welding processes, the ends cut before each weld and the wire left in the feed cable make no process 100% efficient.

For estimates of electrode or wire consumption, the following average values of deposition efficiency may be used.

PROCESS	DEPOSITION EFFICIENCY
Submerged Arc	99%
Gas Metal Arc(98%Ar, 2%O2)	98%
Gas Metal Arc(75%Ar, 25%Co₂)	96%
Gas Metal Arc(100% Co2)	93%
Metal Cored Wires	93%
Gas Shielded Flux Cored Wires	88%
Self Shielded Flux Cored Wires	82%
*Shielded Metal Arc(Stick 12"long)	59%
*Shielded Metal Arc(Stick 14"long)	62%
*Shielded Metal Arc(Stick 18"long)	66%

*Includes 2 "stub loss.

It must be remembered that when deposition tests are perfomed in the laboratory, the depositon efficiency is calculated by the formula :

Deposition Efficiency = Weight of metal deposited Weight of electrode consumed

This does not take stub loss into consideration. The chart below shows how the laboratory established efficiency is effected by the length of the stub.

	Deposition Efficiency	2" STUB	3" STUB	4" STUB	5" STUB
	60%	50.0%	45.0%	40.0%	35.0%
12"	65%	54.2%	46.7%	43.3%	37.9%
ELECTRODE	70%	58.3%	52.5%	46.6%	40.8%
LLLOIRODL	75%	62.5%	56.2%	50.0%	43.7%
	80%	66.6%	60.0%	53.0%	46.6%
	60%	51.4%	47.1%	42.9%	38.3%
	65%	55.7%	51.1%	46.4%	41.0%
14"	70%	60.0%	55.0%	50.0%	45.0%
ELECTRODE	75%	64.3%	56.9%	53.6%	46.2%
	80%	68.5%	62.8%	57.1%	51.4%
	60%	53.3%	50.0%	46.6%	43.3%
10.5	65%	57.7%	54.2%	50.5%	46.9%
18" ELECTRODE	70%	62.2%	56.3%	54.4%	50.5%
LLLCIRODE	75%	66.6%	62.5%	56.3%	54.2%
	80%	71.1%	66.6%	62.2%	57.7%

STUB LOSS CORRECTION TABLE FOR COATED ELECTRODES EFFICIENCY INCLUDING STUB LOSS

ELECTRODE OF WELDING WIRE CONSUMPTION

The following tables show the estimated number of pounds of stick electrode or welding wire required per lineal foot of weld for some of the more common weld joints.

	HORIZONTAL FILLET WELDS												
Fillet Size	Weld Metal Req'd. Per	Pounds of Electrode or Wire Required Per Lineal Foot of Weld											
L	Foot of Weld (Pounds)	SMAW-Stick Electrodes "	GMAW-Solid Wire	FCAW-Gas Shielded	Metal Cored Wires								
1/8"	.027	.043	.028	.032	.028								
3/16 "	.060	.097	.063	.070	.065								
1/4"	.106	.171	.112	.125	.115								
5/16 "	.166	.268	.175	.195	.180								
3/8"	.239	.385	.252	.282	.260								
1/2"	.425	.686	.447	.500	.462								
5/8"	.664	1.071	.699	.781	.722								
3/4"	.956	1,542	1.010	1,125	1,039								
1"	1.698	2,739	1.787	2.000	1.846								

	JOINT MENSIOI INCHES		Weld Metal Req'd, Per Foot of Weld	Stick Electrode Req'd. Per Foot of Weld. (Pounds) *		
Т	В	А	(Pounds)	(Pounds)		
3/16	1/16	3/8	0.093	0.150		
1/4	1/16	7/16	0.115	0.185		
1/4	3/32	7/10	0.142	0.229		
5/16	1/16	1/2	0.137	0.220		
5/16	3/32	1/2	0.165	0.266		

SQUARE BUTT JOINT

SINGLE-V BUTT JOINT

	JOINT MENSIO		Weld Metal Req'd, Per Foot of Weld	Stick Electrode Req'd. Per Foot of Weld.		
Т	В	А	(Pounds)	(Pounds) *		
1/4	1/16	5/16	0.127	0.205		
5/16	3/32	3/8	0.222	0.358		
3/8	1/8	1/2	0.352	0.568		
1/2	1/8	5/8	0.523	0.844		
5/8	1/8	13/16	0.870	1.403		
3/4	1/8	15/16	1.217	1.963		
1	1/8	1 1/14	2.104	3.394		

* Based on 2 "stubs and losses to slag, spatter and fume.

Г ^{1/16}

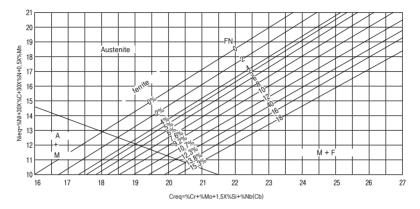
A

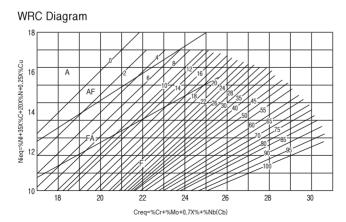
р р

е

d

Schaeffler diagram


 $\begin{aligned} &\text{Creq} = \%\text{Cr} + 1.4(\%\text{Mo}) + 0.5(\%\text{Nb}) + 1.5(\%\text{Si}) + 2(\%\text{Ti}) \\ &\text{Nieq} = \%\text{Ni} + 30(\%\text{C}) + 0.5(\%\text{Mn}) + 30(\%\text{N}) \end{aligned}$


There are several formula for the nickel-and chromium-equivalent, each of them giving a somewhat better result for a particular type of stainless steel. In this case we use the formula as indicated here.

The most important is that a foundry does use formula and check the structure. By doing this they can always evaluate the influence of a fluctuating chemical composition.

The latest version of Creq and Nieq are: Creq = %Cr + 1.0(%Mo) + 0.5(%Nb + %Ta) + 1.5(%Si) + 2(%Ti) + (%W + %V + %Al) Nieq = %Ni + 30(%C) + 0.5(%Mn) + 30(%N) + 0.5(%Co)

Delong Diagram

A p p e n d i

(1) Temperature Conversion table.

۴	Ĵ	°F	Ĵ	۴	°C	۴	C
-350 -340 -330 -320 -310	-212 -207 -201 -196 -190	56 58 60 62 64	13.3 14.4 15.6 16.7 17.8	182 184 188 190	83.3 84.4 85.6 86.7 87.8	820 840 860 900	437.8 448.9 460.0 471.1 482.2
-300	-184	66	18.9	192	88.9	920	493.3
-290	-179	68	20.2	194	90.0	940	504.4
-280	-173	70	21.1	196	91.1	960	515.6
-270	-168	72	22.2	198	92.2	980	527
-260	-162	74	23.3	200	93.3	1000	538
-250	-157	76	24.4	202	94.4	1020	549
-240	-151	78	25.6	204	95.6	1040	560
-230	-146	80	26.7	206	96.7	1060	571
-220	-140	82	27.8	208	97.8	1080	582
-210	-134	84	28.9	210	98.9	1100	593
-200	-129	86	30.0	212	100.0	1120	604
-190	-123	88	31.1	214	101.1	1140	616
-180	-118	90	32.2	216	102.2	1160	627
-170	-112	92	33.3	218	103.3	1180	638
-160	-107	94	34.4	220	104.4	1200	649
-150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -20 -20	-101 -96 -984 -79 -68 -68 -62 -57 -51	96 98 100 102 104	35.6 36.7 37.8 38.9 40.4	230 240 250 260 270	110.0 115.6 121.1 126.7 132.2	1220 1240 1260 1280 1300	660 671 682 683 704
-100	-73	106	41.1	280	137.8	1320	716
-90	-68	108	42.2	290	143.3	1340	727
-80	-62	110	43.3	300	148.9	1360	738
-70	-57	112	44.4	310	154.4	1380	749
-60	-51	114	45.6	320	160.0	1400	760
	-45.6	116	46.7	330	165.6	1420	771
	-40.0	118	47.8	340	171.1	1440	727
	-34.4	120	48.9	350	176.7	1460	738
	-28.9	122	50.0	360	182.2	1480	749
	-23.3	124	51.1	370	187.8	1500	760
0	-17.8	126	52.2	380	193.3	1520	827
2	-16.7	128	53.3	390	198.9	1540	838
4	-15.6	130	54.4	400	204.4	1560	849
6	-14.4	132	55.6	410	210.0	1580	860
8	-13.3	134	56.7	420	215.6	1600	871
10	-12.2	136	57.8	430	221.1	1620	882
12	-11.1	138	58.9	440	226.7	1640	893
14	-10.0	140	60.0	450	232.2	1660	904
16	-8.9	142	61.1	460	237.8	1680	916
18	-7.8	144	62.2	470	243.3	1700	927
20	-6.7	146	63.3	480	248.9	1720	938
22	-5.6	148	64.4	490	254.4	1740	949
24	-4.4	150	65.6	500	260.0	1760	960
26	-3.3	152	66.7	520	271.1	1780	971
28	-2.2	154	67.8	540	282.2	1800	982
30	-1.1	156	68.9	560	293.3	1820	993
32	0	158	70.0	580	304.4	1840	1004
34	1.1	160	71.1	600	315.6	1860	1016
36	2.2	162	72.2	620	326.7	1880	1027
38	3.3	164	73.3	640	337.8	1900	1038
40	4.4	166	74.4	660	348.9	1920	1049
42	5.6	168	75.6	680	360.0	1940	1060
44	6.7	170	76.7	700	371.1	1960	1071
46	7.8	172	77.8	720	382.2	1980	1082
48	8.9	174	78.9	740	393.3	2000	1093
50 52 54	10.0 11.1 12.2	176 178 180	80.0 81.1 82.2	760 780 800	404.4 415.6 426.7		

 $\mathbf{\hat{F}} = \frac{9}{5} \times \mathbf{\hat{C}} + 32 \qquad \mathbf{\hat{C}} = \frac{5}{9} \quad (\times \mathbf{\hat{F}} - 32)$

А

р е

d

(2) Stress conversion table.

1 lbf/in²=0.000703070kgf/mm²

1 lbf/in ²	0,000	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
					kgf/mm ²					
0,000	0,000	0,703	1,406	2,109	2,812	3,515	4,128	4,992	5,625	6,328
10,000	7,031	7,734	8,437	9,140	9,843	10,546	11,249	11,952	12,655	13,358
20,000	14,061	14,765	15,468	16,171	16,874	17,577	18,280	18,983	19,686	20,389
30,000	21,092	21,795	22498	23,201	23,904	24,607	25,311	26,014	26,717	27,420
40,000	28,123	28,826	29,529	30,232	30,232	31,638	32,341	33,044	33,747	34,450
50,000	35,154	35,857	36,560	37,263	37,966	38,669	39,372	40,075	40,778	41,481
00.000	40.404	40.007	40 500	44.000	44.007	45 700	40,400	47 400	47.000	40 540
60,000	42,184	42,887	43,590	44,293	44,997	45,700	46,403	47,106	47,809	48,512
70,000	49,215	49,918	50,621	51,324	52,027	52,730	53,433	54,136	54,840	55,543
80,000 90,000	56,246 63.276	56,949	57,652 64.682	58,355 65,386	59,058	59,761 66.792	60,464	61,167	61,870	62,573 69.604
90,000 100,000	63,276 70,307	63,979 71,010	04,002 71,713	05,300 72,416	66,089 73,119	00,792 73,822	67,495 74,525	68,198 75,229	68,901 75,932	69,604 76,635
100,000	10,307	71,010	11,113	12,410	73,119	13,022	74,525	15,229	10,902	70,000
110,000	77,338	78,041	78,744	79,447	80,150	80,853	81,556	82,259	82,962	790,696
120,000	84.368	85,072	85,775	86.478	87,181	87.884	88.587	89,290	89,993	97,727
130,000	91,399	92,102	92,805	93,508	94,211	94,914	95,618	96,321	97,024	104,757
140,000	98.430	99,133	99.836	100.539	101,242	101.945	102,648	103.351	104.054	111.788
150,000	105,460	106,164	106,867	107,570	108,273	108,976	109,679	110,382	111,085	,
	ŕ	ŕ	ŕ		ŕ		ŕ	ŕ	ŕ	
160,000	112,491	113,194	113,897	114,600	115,303	116,007	116,007	117,413	118,116	118,819
170,000	119,522	120,225	120,928	121,631	122,334	123,037	123,037	124,443	125,146	125,850
180,000	126,553	127,256	127,959	128,662	129,365	130,068	130,068	131,474	132,177	132,880
190,000	133,583	134,286	134,989	135,693	136,396	137,099	137,099	138,505	139,208	139,911
200,000	140,614	141,317	142,020	142,723	143,426	144,129	144,129	145,535	146,239	146,942

1 lbf/in ²	100	200	300	400	500	600	700	800	900
kgf/mm ²	0.0703	0.1406	0.2109	0.2812	0.3515	0.4218	0.4922	0.5625	0.6328

kgf/mm ²	lbf/in²(psi)	N/mm ² (MPa)
1	1422.31	9.80665
7.03X10 ⁻⁴	1	6.895X10 ⁻³
0.10197	145.035	1

(3) Impact value conversion table

Conversion factor: 1 ft · lbf=0.138255kgf · m

ft · Ibf	0	1	2	3	4	5	6	7	8	9
		-			kgf ∙ m					
0	0.000	0.138	0.277	0.415	0.553	0.691	0.830	0.968	1.106	1.244
10	1.383	1,152	1.659	1.797	1.936	2.074	2.212	2.350	2,489	2.627
20	2.765	2.903	3.042	3.180	3.318	3.456	3.595	3.733	3.871	4.009
30	4.148	4.286	4.424	4.562	4.701	4.839	4.977	5.115	5.254	5.392
40	5.530	5.669	5.807	5.945	6.083	6.222	6.360	6.498	6.636	6.775
50	6.913	7.051	7.189	7.328	7.466	7.604	7.742	7.881	8.019	8.157
60	8.295	8.434	8.572	8.710	8.848	8.987	9,125	9.263	9.401	9.540
70	0.295 9.678	0.434 9.816	9.954	10.093	0.040 10.231	10.369	9.125	9.203 10.646	9.401 10.784	9.540
80	11.060	11,199	11.337	11.475	11.613	11.752	11.890	12.028	12,166	12.305
90	12.443	12,581	12,719	12.858	12.996	13,134	13.372	13,411	13,549	13.687
100	13.826	13.964	14.102	14.240	14.379	14.517	14.655	14.793	14.932	15.070
	45 000	15 0 10	15 105	15 000		45 000	40.000	10 170		10 150
110	15.208	15.346	15.485	15.623	15.761	15.899	16.038	16.176	16.314	16.452
120 130	16.591 17.973	16.729 18.111	16.867 18.250	17.005 18.388	17.144 18.526	17.282 18.664	17.420 18.803	17.558 18.941	17.697 19.079	19.217
130	19.356	19,494	19.632	19,770	19.909	20.047	20,185	20.323	20.462	20.600
140	20.738	20.877	21.015	21.153	21.291	20.047	21.568	20.323	21.844	21.983
100	20.700	20.077	21.010	21.100	21.201	21.100	21.000	21.700	21.011	21.000
160	22.121	22.259	22.397	22.536	22.674	22.812	22.950	23.098	23.227	23.365
170	23.503	23.642	23.780	23.918	24.056	24.195	24.333	24.471	24.609	24.748
180	24.886	25.024	25.162	25.301	25.439	25.277	25.715	25.854	25.992	26.130
190	26.268	26.407	26.545	26.683	26.821	26.960	27.098	27.236	27.374	27.513
200	27.651	27.789	27.928	28.066	28.204	28.342	28.481	28.619	28.757	28.895

kgf/m	ft ⋅ lbf	J
1	7.23275	9.80665
0.13826	1	1.35587
0.10197	0.73754	1

ft · lbf $\langle = \rangle$ kgf · m

 $1 \text{kgf} \cdot \text{m} = 9.8066 \text{N} \cdot \text{m}(\text{or J})$

kgf \cdot m	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-					N·m	(or J)				
1 2 3 4	- 9.8066 19.613 29.420 39.227	0.9807 10.787 20.594 30.401 40.207	1.9613 11.768 21.575 31.381 41.188	2.9420 12.749 22.555 32.362 42.169	3.9227 13.729 23.536 33.343 43.149	4.9033 14.710 24.517 34.323 44.130	5.8840 15.691 25.497 35.304 45.111	6.8647 16.671 26.478 36.285 46.091	7.8453 17.652 27.459 37.265 47.072	8.8260 18.633 28.439 38.249 48.053
5	49.033	50.014	50.995	51.975	52.956	53.937	54.917	55.898	56.879	57.859
6	58.840	59.821	60.801	61.782	62.763	63.743	64.724	65.705	66.685	67.666
7	68.647	69.627	70.608	71.589	72.569	73.550	74.531	75.511	76.492	77.473
8	78.453	79.434	80.415	81.395	82.376	83.357	84.337	85.318	86.299	87.279
9	88.260	89.241	90.221	91.202	92.183	93.163	94.144	95.125	96.105	97.086
10	98.066	99.047	100.03	101.01	101.99	102.97	103.95	104.93	105.91	106.89
11	107.87	108.85	109.83	110.82	111.80	112.78	113.76	114.74	115.72	116.70
12	117.68	118.66	119.64	120.62	121.60	122.58	123.56	124.54	125.53	126.51
13	127.49	128.47	129.45	130.43	131.41	132.39	133.37	134.35	135.33	136.31
14	137.29	138.27	139.25	140.24	141.22	142.20	143.18	144.16	145.14	146.12
15	147.10	148.08	149.06	150.04	151.02	152.00	152.98	153.96	154.95	155.93
16	156.91	157.89	158.87	159.85	160.83	161.81	162.79	163.77	164.75	165.73
17	166.71	167.69	168.67	169.66	170.64	171.62	172.60	173.58	174.56	175.54
18	176.52	177.50	178.48	179.46	180.44	181.42	182.40	183.38	184.37	185.35
19	186.33	187.31	188.29	189.27	190.25	191.23	192.21	193.19	194.17	195.15
20	196.13	197.11	198.09	199.07	200.06	201.04	202.02	203.00	203.98	204.96
21	205.94	206.92	207.90	208.88	209.86	210.84	211.82	212.80	213.78	214.77
22	215.75	216.73	217.71	218.69	219.67	220.65	221.63	222.61	223.59	224.57
23	225.55	226.53	227.51	228.49	229.48	230.46	231.44	232.42	233.40	234.38
24	235.36	236.34	237.32	238.30	239.28	240.26	241.24	242.22	243.20	244.19
25	245.17	246.15	247.13	248.11	249.09	250.07	251.05	252.03	253.01	253.99
26	254.97	255.95	256.93	257.91	258.90	259.88	260.86	261.84	262.82	263.80
27	264.78	265.76	266.74	267.72	268.70	269.68	270.66	271.64	272.62	273.61
28	274.59	275.57	276.55	277.53	278.51	279.49	280.47	281.45	282.43	283.41
29	284.39	285.37	286.35	287.33	288.32	289.30	290.28	291.26	292.24	293.22
30	294.20	295.18	296.16	297.14	298.12	299.10	300.08	301.06	302.04	303.03
31	304.01	304.99	305.97	306.95	307.93	308.91	309.89	310.87	311.85	312.83
32	313.81	314.79	315.77	316.75	317.74	318.72	319.70	320.68	321.66	322.64
33	323.62	324.60	325.58	326.56	327.54	328.52	329.50	330.48	331.46	332.45
34	333.43	334.41	335.39	336.37	337.35	338.33	339.31	340.29	341.27	342.25
35	343.23	344.21	345.19	346.17	347.16	348.14	349.12	350.10	351.08	352.06
36	353.04	345.02	355.00	355.98	356.96	357.94	358.92	359.90	360.88	361.87
37	362.85	363.83	364.81	365.79	366.77	367.75	368.73	369.71	370.69	371.67
38	372.65	373.63	374.61	375.59	376.58	377.56	378.54	379.52	380.50	381.48
39	382.46	383.44	384.42	385.40	386.38	387.36	388.34	389.32	390.30	391.29
40	392.27	393.25	394.23	395.21	396.19	397.17	398.15	399.13	400.11	401.09
41	402.07	403.05	404.03	405.01	406.00	406.98	407.96	408.94	409.92	410.90
42	411.88	412.86	413.84	414.82	415.80	416.78	417.76	418.74	419.72	420.71
43	421.69	422.67	423.65	424.63	425.61	426.59	427.57	428.55	429.53	430.51
44	431.49	432.47	433.45	434.43	435.42	436.40	437.38	438.36	439.34	440.32
45	441.30	442.28	443.26	444.24	445.22	446.20	447.18	448.16	449.14	450.13
46	451.11	452.09	453.07	454.05	455.03	456.01	456.99	457.97	458.95	459.93
47	460.91	461.89	462.87	463.85	464.84	465.82	466.80	467.78	468.76	469.74
48	470.72	471.70	472.68	473.66	474.64	475.62	476.60	477.58	478.56	479.55
49	480.53	481.51	482.49	483.47	484.45	485.43	486.41	487.39	488.37	489.35

$kgf\cdotm$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
		-			N·m	ı(or J)		-		
50	490.33	491.31	492.29	493.27	494.26	495.24	496.22	497.20	498.18	499.16
51	500.14	501.12	502.10	503.08	504.06	505.04	506.02	507.00	507.98	508.97
52	509.95	510.93	511.91	512.89	513.87	514.85	515.83	516.81	517.79	518.77
53	519.75	520.73	521.71	522.69	523.68	524.66	525.64	526.62	527.60	528.58
54	529.56	530.54	531.52	532.50	533.48	534.46	535.44	536.42	537.40	538.39
55	539.37	540.35	541.33	542.31	543.29	544.27	545.25	546.23	547.21	548.19
56	579.17	550.15	551.13	552.11	553.10	554.08	555.06	556.04	557.02	558.00
57	558.98	559.96	560.94	561.92	562.90	563.88	564.86	565.84	566.82	567.81
58	568.79	569.77	570.75	571.73	572.71	573.69	574.67	575.65	576.63	577.61
59	578.59	579.57	580.55	581.53	582.52	583.50	584.48	585.46	586.44	587.42
60	588.40	589.38	590.36	591.34	592.32	593.30	594.28	595.26	596.24	597.22
61	598.21	599.19	600.17	601.15	602.13	603.11	604.09	605.07	606.05	607.03
62	608.01	608.99	609.97	610.95	611.93	612.92	613.90	614.88	615.86	616.84
63	617.82	618.80	619.78	620.76	621.74	622.73	623.70	624.68	625.66	626.64
64	627.63	628.61	629.59	630.57	631.55	632.53	633.51	634.49	635.47	636.45
65	637.43	638.41	639.39	640.37	641.35	642.34	643.32	644.30	645.28	646.26
66	647.24	648.22	649.20	650.18	651.16	652.14	653.12	654.10	655.08	656.06
67	657.05	658.03	659.01	659.99	660.97	661.95	662.93	663.91	664.89	665.87
68	666.85	667.83	668.81	669.79	670.77	671.76	672.74	673.72	674.70	675.68
69	676.66	677.64	678.62	679.60	680.58	681.56	682.54	683.52	684.50	685.48
70	686.47	687.45	688.43	689.41	690.39	691.37	692.35	693.33	694.31	695.29
71	696.27	697.25	698.23	699.21	700.19	701.18	702.16	703.14	704.12	705.10
72	706.08	707.06	708.04	709.02	710.00	710.98	711.96	712.94	713.92	714.90
73	715.89	716.87	717.82	718.83	719.81	720.79	721.77	722.75	723.73	724.71
74	725.69	726.67	727.65	728.63	729.61	730.60	731.58	732.56	733.54	734.52
75	735.50	736.48	737.46	738.44	739.42	740.40	741.38	742.36	743.34	744.32
76	745.31	746.29	747.27	748.52	749.23	750.21	751.19	752.17	753.15	754.13
77	755.11	756.09	757.07	758.05	759.03	760.02	761.00	761.98	762.96	763.94
78	764.92	765.90	766.88	767.86	768.84	769.82	770.80	771.78	772.76	773.74
79	774.73	775.71	776.69	777.67	778.65	779.63	780.61	781.59	782.57	783.55
80	784.53	785.51	786.49	787.47	788.45	789.44	790.42	791.40	792.38	793.36
81	794.34	795.32	796.30	797.28	798.26	799.24	800.22	801.20	802.18	803.16
82	804.15	805.13	806.11	807.09	808.07	809.05	810.03	811.01	811.99	812.97
83	813.95	814.93	815.91	816.89	817.87	818.86	819.84	820.82	821.80	822.78
84	823.76	824.74	825.72	826.70	827.68	828.66	829.64	830.62	831.60	832.58
85	833.57	834.55	835.53	836.51	837.49	838.47	839.45	840.43	841.41	842.39
86	843.37	844.35	845.33	846.31	847.29	848.28	849.26	850.24	851.22	852.20
87	853.18	854.16	855.14	856.12	857.10	858.08	859.06	860.04	861.02	862.00
88	862.99	863.97	864.95	865.93	866.91	867.89	868.87	869.85	870.83	871.81
89	872.79	873.77	874.75	875.73	876.71	877.70	878.68	879.66	880.64	881.62
90	882.60	883.58	884.56	885.54	886.52	887.50	888.48	889.46	890.44	891.42
91	892.41	893.39	894.37	895.35	896.33	897.31	898.29	899.27	900.25	901.23
92	902.21	903.19	904.17	905.15	906.13	907.12	908.10	909.08	910.06	911.04
93	912.02	913.00	913.98	914.96	915.94	916.92	917.90	918.88	919.86	920.84
94	921.83	922.81	923.79	924.77	925.75	926.73	927.71	928.69	929.67	930.65
95	931.63	932.61	933.59	934.57	935.55	936.54	937.52	938.50	939.48	940.46
96	941.44	942.42	943.40	944.38	945.36	946.34	947.32	948.30	949.28	950.26
97	951.25	952.23	953.21	954.19	955.17	956.15	957.13	958.11	959.09	960.07
98	961.05	962.03	963.01	963.99	964.97	965.96	966.94	967.92	968.90	969.88
99	970.86	971.84	972.82	973.80	974.78	975.76	976.74	977.72	978.70	979.68
100	980.66									

(4) Hardness conversion table.

Vickers	Brinell Hardness 10mm Ball Ioad3000kg			Rockwell Hardness				Shore	Tensile.
Hardness (DPH)	Stand −and Ball	Hult– gren Ball	Tungsten Carbide Ball	A scale	B scale	C scale	D scale	Hardness	strength. (kgf/mm²) (APProx)
940 920 900 880 860	- - - -	- - - -	- - 767 757	85.6 85.3 85.0 84.7 84.4	- - - -	68.0 67.5 67.0 66.4 65.9	76.9 76.5 76.1 75.7 75.3	97 96 95 93 92	- - - - -
840 820 800 780 760	- - - -	- - - -	745 733 722 710 698	84.1 83.8 83.4 83.0 82.6	- - - -	65.3 64.7 64.0 63.3 62.5	74.8 74.3 73.8 73.3 72.6	91 90 88 87 86	- - - -
740 720 700 690 680	- - - -	- 615 610 603	684 670 656 647 638	82.2 81.8 81.3 81.1 80.8	- - - -	61.8 61.0 60.1 59.7 59.2	72.1 71.5 70.8 70.5 70.1	84 83 81 - 80	- - - -
670 660 650 640 630	- - - -	597 590 585 578 571	630 620 611 601 591	80.6 80.3 80.0 79.8 79.5	- - - -	58.8 58.3 57.8 57.3 56.8	69.8 69.4 69.0 68.7 68.3	- 79 - 77 -	- - - - -
620 610 600 590 580	- - - -	564 557 550 542 535	582 573 564 554 545	79.2 78.9 78.6 78.4 78.0	- - - -	56.3 55.7 55.2 54.7 54.1	67.9 67.5 67.0 66.7 66.2	75 - 74 - 72	- - 210 206
570 560 550 540 530	- 505 496 488	527 519 512 503 495	535 525 517 507 497	77.8 77.4 77.0 76.7 76.4	- - - -	53.6 53.0 52.3 51.7 51.1	65.8 65.4 64.8 64.4 63.9	- 71 - 69 -	202 199 194 190 186
520 510 500 490 480	480 473 465 456 448	487 479 471 460 452	488 479 471 460 452	76.1 75.7 75.3 74.9 74.5	- - - -	50.5 49.8 49.1 48.4 47.7	63.5 62.9 62.2 61.6 61.3	67 - 66 - 64	183 179 174 169 165
470 460 450 440 430	441 433 425 415 405	442 433 425 412 405	442 433 425 415 405	74.1 73.6 73.3 72.8 72.3	- - - -	49.9 46.1 45.3 44.5 43.6	60.7 60.1 59.4 58.8 58.2	- 62 - 59 -	160 156 153 149 144
420 410 400 390 380	397 388 379 369 360	397 388 379 369 360	497 388 379 369 360	71.8 71.4 70.8 70.3 69.8	 (110.0)	42.7 41.8 40.8 39.8 38.8	57.5 56.8 56.0 55.2 54.4	57 - 55 - 22	140 136 131 127 123

Vickers	Brinell Hardness s 10mm Ball Ioad3000kg			Rockwell Hardness					Tensile.
Hardness (DPH)	Stand −and Ball	Hult– gren Ball	Tungsten Carbide Ball	A scale	B scale				strength. (kgf/mm²) (APProx)
370 360 350 340 330	350 341 331 322 313	350 341 331 322 313	350 341 331 322 313	69.2 68.7 68.1 67.6 67.0	(109.0) (108.0)	37.7 36.6 35.5 34.4 33.3	53.6 52.8 51.9 51.1 50.2	- 50 - 47 -	120 115 112 109 105
320 310 300 295 290	303 294 284 280 275	303 294 284 280 275	303 294 284 280 275	66.4 65.8 65.2 64.8 64.5	(107.0) (105.0) (104.5)	32.2 31.0 29.8 29.2 28.5	49.4 48.4 47.5 47.1 46.5	45 42 41	103 100 97 96 94
285 280 275 270 265	270 265 256 252 252	270 265 261 256 252	270 265 261 256 252	64.2 63.8 63.5 63.1 62.7	(103.5) (102.0)	27.8 27.1 26.4 25.6 24.8	46.0 45.3 44.9 44.3 43.7	- 40 - 38 -	92 91 89 87 86
260 255 250 245 240	247 243 238 233 228	247 243 238 233 228	247 243 238 233 228	62.4 62.0 61.6 61.2 60.7	(101.0) 99.5 98.1	24.0 23.1 22.2 21.3 20.3	43.1 42.2 41.7 41.1 0.3	37 	84 82 81 79 78
230 220 210 200 190	219 209 200 190 181	219 209 200 190 181	219 209 200 190 181	- - - -	96.7 95.0 93.4 91.5 89.5	(18.0) (15.7) (13.4) (11.0) (8.5)	- - - -	33 32 30 29 28	75 71 68 65 62
180 170 160 150 140	171 162 152 143 133	171 162 152 143 133	171 162 152 143 133	- - - -	87.1 85.0 81.7 78.7 75.0	(6.0) (3.0) (0.0) 	- - - -	26 25 24 22 21	59 56 53 50 46
130 120 110 100 95	124 114 105 95 90	124 114 105 95 90	124 114 105 95 90	- - - -	71.2 66.7 62.3 56.2 52.0	- - - -	- - - -	20 - - -	44 40 - - -
90 85	86 81	86 81	86 81	- -	- -	- -	- -	- -	-